小白学数据分析----->付费用户的金字塔模型实践操作

简介: 免费游戏中付费用户模型分析 最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下。

免费游戏中付费用户模型分析

最近看了不少文章,对于付费用户的模型也有了很深刻的理解和认识,早先我做了不少关于大R,中间R,低端R用户的分析,想来还是觉得草草了事,近来有网友提出来,理论探讨的多了些,实践上手的东西少了点,毕竟还是叫做小白学数据分析啊,今天就把以前说过的付费用户的模型具体的实践一下。

感悟和理论

得到的灵感首先要感谢Nicholas Lovell 的这篇文章,是我得到了一些处理和分析这个模型的办法。连接如下:

http://www.gamesbrief.com/2011/11/whales-dolphins-and-minnows-the-beating-heart-of-a-free-to-play-game/

Lovell是从理论的解析了这个付费用户的模型,篇幅很短但是内容很好。早先我们有一个观点就是付费渗透率的提升,意味着收入在随后的一段时间内会逐渐打开和扭转,因为一旦用户开始付费(且这个群体不断膨胀),那么我们的收入就会有起色,这些人会从最开始的一元两元开始发展到几十几百的规模。

事实上呢,这种情况存在,但是更多时候这个看似正确的命题却鲜有证明过。那么我们可以认为收入的增长其实不是靠量的积累,也就是说不是靠你拉来多少用户,有多少用户转化了付费,而是依靠那些少量却能创造大收入的用户。这点在免费游戏中是如此。

现在大多数的游戏是免费游戏,免费游戏去掉了体验游戏的障碍,这就最大程度上意味着解放了用户的消费能力,去除了消费的上限。

由免费游戏的用户构建的虚拟社会本身就是不平等的,因为消费的差异化打开了,因此我们也通过道具得形式不断的解放和发展用户的消费潜能,比如消耗品、升级、美化、社交、金钱换时间的方式。在Lovell的文章中提出了一个模式化免费增值能量定律:

将玩家分成三大类:

* 每月投入极少资金的小鱼,通常是1美元。

* 花费“中等”数额的海豚。他们平均每月花费5美元。

* 投入大量资金的鲸鱼。他们平均每月花费20美元。

* 免费体验者属于第四类。

三类用户的分布比例如下:

* 小鱼:50%的付费用户

* 海豚:40%的付费用户

* 鲸鱼:10%的付费用户

注意这是能量定律模型的近似估值。你可以调整分布比例和ARPPU数值。但调整分布比例和ARPPU数值会改变预期的曲线。

这里Lovell谈到的付费用户的划分标准时5:4:1,对于这一点我觉得这就确立了我们在对待ARPPU的问题上也要阶梯式的看法,相比笼统的确立ARPPU,空喊提升或者降低,这种确立方式是有效的,也是更加精准的。

实践和结果

按照Lovell的分析和结论,我进行了分析,首先我们拿到用户的充值记录,我们将充值记录进行处理,由原本的交易格式变成基本的表格数据。利用数据透视表得到每个账户的充值金额和充值次数。

在充值金额的曲线上,我们看到基本上是符合幂律分布的。

 

而对应的充值次数进行分析,也是与充值金额的趋势基本一致,符合幂律分布形式,而我们的接下来的付费用户的分类模型采用什么样的数据进行分类将变得非常重要。

 

如刚才我所提到的,我们把用户的充值数据变化形式,由交易数据变成表格数据,这一步是最关键,即表格数据我们就可以知道每个付费用户目前充值总额和充值次数。下面我们就利用这种数据进行具体的分析处理。

首先,我们确立几个统计指标,平均数,众数,中位数。

平均数:即ARPPU,也就是充值总额/总充值用户数;

众数:一组数据出现频率最高的值,在Excel中的函数是mode();

中位数:一组数据中从小到大排列,处于中间位置的数,在Excel中的函数是Median()。

我们完成以上三个数据指标的计算,数据如下:

ARPPU

289

mode

50

median

60

如果你愿意,也可以计算一下在交易数据格式下的众数。

接下来,就是比较关键的过程了,这里我使用SPSS进行描述统计,做频数分析,这个过程也可以在Excel的数据分析过程中完成。

 

把刚才处理好的数据导入到SPSS中,一共三个变量,如下图:

 

账户ID、充值额、充值次数

随后,我们打开频率分析面板

统计量位置,按照自己的需求进行选取就可以了,如下图所示:

点击继续,等待结果输出,输出后,在左侧会有相应的提示,参照提示查看就可以了,此处我们重点看频率表

如下图,则是输出的频率表

此图中,我们看到50%的用户充值在50元,按照之前的结论,我们把这部分群体划分为小额用户,即小鱼用户。

然而,根据平均数计算的ARPPU的289元,达到该级别的用户不到20%,换句话,ARPPU不能一味笼统的判断目前游戏用户的充值能力和付费情况。

接下来,如果我们按照lovell的划分40%为海豚用户,那么海豚用户应该是达到90%了,如下图:

海豚用户的充值最高达到了571元,最低60元。

随后我们把接下来的10%划分为鲸鱼用户,他们的最高充值达到了千元以上。

以上我们是按照lovell的划分方式进行,接下来我们要进行第三步分析了。

首先小鱼用户占据50%的用户总量,经过数据处理我们得到

ARPPU:35

收入占比:6%

其次海豚用户占比40%的用户总量,经过数据处理我们得到

ARPPU:192

收入占比:27%

第三鲸鱼用户占比10%的用户总量,经过数据处理我们得到

ARPPU:1927

收入占比:67%

经过以上的分析和整理,基本上验证了lovell所说的5:4:1

相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
83 2
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
使用Jupyter Notebook进行数据分析:入门与实践
【6月更文挑战第5天】Jupyter Notebook是数据科学家青睐的交互式计算环境,用于创建包含代码、方程、可视化和文本的文档。本文介绍了其基本用法和安装配置,通过一个数据分析案例展示了如何使用Notebook进行数据加载、清洗、预处理、探索、可视化以及建模。Notebook支持多种语言,提供直观的交互体验,便于结果呈现和分享。它是高效数据分析的得力工具,初学者可通过本文案例开始探索。
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析:从入门到实践
使用Python进行数据分析:从入门到实践
46 2
|
1月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
147 0
|
2月前
|
数据采集 算法 搜索推荐
R语言营销数据分析:使用R进行客户分群的实践探索
【9月更文挑战第1天】R语言以其强大的数据处理和统计分析能力,在金融数据分析、营销数据分析等多个领域发挥着重要作用。通过R语言进行客户分群,企业可以更好地理解客户需求,制定精准的营销策略,提升市场竞争力和客户满意度。未来,随着大数据和人工智能技术的不断发展,R语言在营销数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
90 2
|
3月前
|
机器学习/深度学习 前端开发 数据挖掘
基于Python Django的房价数据分析平台,包括大屏和后台数据管理,有线性、向量机、梯度提升树、bp神经网络等模型
本文介绍了一个基于Python Django框架开发的房价数据分析平台,该平台集成了多种机器学习模型,包括线性回归、SVM、GBDT和BP神经网络,用于房价预测和市场分析,同时提供了前端大屏展示和后台数据管理功能。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
|
3月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析的新手指南深入浅出操作系统:从理论到代码实践
【8月更文挑战第30天】在数据驱动的世界中,掌握数据分析技能变得越来越重要。本文将引导你通过Python这门强大的编程语言来探索数据分析的世界。我们将从安装必要的软件包开始,逐步学习如何导入和清洗数据,以及如何使用Pandas库进行数据操作。文章最后会介绍如何使用Matplotlib和Seaborn库来绘制数据图表,帮助你以视觉方式理解数据。无论你是编程新手还是有经验的开发者,这篇文章都将为你打开数据分析的大门。
|
4月前
|
关系型数据库 分布式数据库 数据库
基于PolarDB的图分析:保险数据分析实践
本文以公开的保险数据集为例,示例了基于云原生数据库PolarDB上,在保险理赔场景下,执行图查询来发现异常理赔记录和欺诈团伙:例如,查询与欺诈保单有相同理赔病人的其他保单,或者找出欺诈保单的投保人社交关系,以便进行欺诈预警。PolarDB在关系型数据库的基础上,提供了图分析能力,为企业的统一数据管理和分析,提供了强有力的支撑。