小白学数据分析-----> 转化率的四种形式

简介: 在数据分析中我们经常会使用各种类型的转化率分析,在游戏数据分析中,我们对于转化率的使用更为频繁,比如渠道分析,玩家购买流程转化率等等。在实际使用过程中,总结出来了四种转化率的形式,这里简单说说。 回炉型转化率 所谓回炉型转化率指的是在转化的第一步到第二步的转化过程中就出现了较大的障碍,从第一步到第二步,转化率变化比较大,这种转化率形式的出现,就需要回炉进行问题分析和处理,这种类似的转化率比如在渠道用户推广时可以作为一个渠道用户质量把控的分析方法,同时,也是检测游戏本身在新用户导入时的新手引导等功能的检测。

在数据分析中我们经常会使用各种类型的转化率分析,在游戏数据分析中,我们对于转化率的使用更为频繁,比如渠道分析,玩家购买流程转化率等等。在实际使用过程中,总结出来了四种转化率的形式,这里简单说说。

  • 回炉型转化率

所谓回炉型转化率指的是在转化的第一步到第二步的转化过程中就出现了较大的障碍,从第一步到第二步,转化率变化比较大,这种转化率形式的出现,就需要回炉进行问题分析和处理,这种类似的转化率比如在渠道用户推广时可以作为一个渠道用户质量把控的分析方法,同时,也是检测游戏本身在新用户导入时的新手引导等功能的检测。

 

  • 常规型转化率

如上图所示,整体来看,不同步骤之间的转化率的变化是比较缓慢的,并没有出现某一个步骤的大幅下滑,且整体的转化率趋势保持的还是相对平稳的,此种就是常规型的转化率。一般来说达到这种类型的标准就很不错了。由于转化率的这种模型结构在很多地方都能用到,所以这里不具体举例子来说明这个问题。

  • 优质型转化率

所谓优质型转化率就是在常规型转化率的基础上表现的更好一点,只是在几步之间的转化损失更小一点,即下降速度更加缓慢,在很多涉及到转化率的分析上,这种类型的转化率属于优质型的转化率。但是一般而言是达不到的。

 

  • 问题型转化率

如上图所示,所谓问题型转化率,往往问题都是出现的比较怪异的,一般而言,都是前几步转化率都比较理想,但是这其中后续的某一步出现了问题,这种落差都会比较明显,在转化率表现上,就是突然某一步的转化率下滑较大,这种形式的转化率一般会出现在购买流程转化率分析,某一个事件的转化过程中也会出现这种下滑。

这样的转化率问题定位其实比较快速和直接,能够马上进行修补,不同于回炉型的转化率,这种转化效果只是需要针对某一步进行优化就可以了,而不是全局性的优化。

以上就是四种转化率模型,这里只是简单的描述了一下,如果要深刻理解,还需要进行具体的数据分析和实践才能搞定这件事。

相关文章
|
数据挖掘
88 网站点击流数据分析案例(统计分析-键路径转化率分析)
88 网站点击流数据分析案例(统计分析-键路径转化率分析)
83 0
|
数据挖掘 UED
小白学数据分析----->学习注册转化率
你的注册转化率及格了吗? 注册转化率,一个基本上可以忽略的指标,虽然简单,但是却真实反映渠道,发行商,开发者的实力,以及对待产品的态度。 所谓的注册转化率,其实指的是玩家从下载游戏后,打开激活游戏,注册成功游戏的比率,即注册账户/激活账户数,如果出现单个设备,多个账号的情况,算作一次转化。
1151 0
|
15天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
45 4
数据分析的 10 个最佳 Python 库
|
4月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
88 2
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
209 4
|
4月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
90 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
1月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
32 2
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
【9月更文挑战第2天】数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
62 5