[物理学与PDEs]第1章第8节 静电场和静磁场 8.1 静电场

简介: 1. 静电场: 由静止电荷产生的稳定电场.     2. 此时, Maxwell 方程组为 $$\bex \Div{\bf D}=\rho_f,\quad \rot{\bf E}={\bf 0}.

1. 静电场: 由静止电荷产生的稳定电场.

 

 

2. 此时, Maxwell 方程组为 $$\bex \Div{\bf D}=\rho_f,\quad \rot{\bf E}={\bf 0}. \eex$$ 于是 $$\bex {\bf E}=-\n\phi,\quad -\cfrac{\p}{\p x}\sex{\ve \cfrac{\p\phi}{\p x}}-\cfrac{\p}{\p y}\sex{\ve \cfrac{\p\phi}{\p y}} -\cfrac{\p}{\p z}\sex{\ve \cfrac{\p\phi}{\p z}}=\rho_f. \eex$$ 而在媒介内部, 静电势 $\phi$ 满足非齐次的拟调和方程.

 

 

2. 边界条件 (交界面条件) $$\bex \sez{{\bf D}}\cdot{\bf n}=\omega_f,\quad \sez{{\bf E}}\times{\bf n}={\bf 0} \eex$$ 化为电势满足的边界条件: $$\bex \sez{\ve\cfrac{\p\phi}{\p n}}=-\omega_f,\quad [\phi]=0\quad\sex{\mbox{经调整}}. \eex$$

 

 

4. 其他边界条件

 

(1) 带点导体以外空间的静电场

 

a. 每个导体上电荷分布的总和 $=$ 所加置的电荷总量.

 

b. 导体所带电荷以面电荷的形式分布在导体表面上 (趋肤效应).

 

c. 每个导体是等势体, 其上静电势为常数.

 

d. 自由电荷通过导体边界向外发出的总电通量 $=$ 导体上总自由电荷: $$\bex \int_{\p\Omega}{\bf D}\cdot{\bf n}\rd S=Q_f. \eex$$ 而边界条件: $$\bex \phi=\const,\quad \int_{\p\Omega}\ve\cfrac{\p \phi}{\p n}\rd S=Q_f\quad\sex{{\bf n} \mbox{ 指向导体内部}}. \eex$$ 这称为等直面边界条件 (总流量边界条件).

 

(2) 求解区域为无界域时, 边界条件还需加上: $$\bex \lim_{(x,y,z)\to\infty}\phi(x,y,z)=0. \eex$$

 

(3) 带电导体对称时, 边界条件须加上: $$\bex \cfrac{\p\phi}{\p n}=0. \eex$$

 

 

5. 静电场中的量用 $\phi$ 表示

 

(1) 比如电磁场能量密度: $$\bex \cfrac{1}{2}{\bf E}\cdot{\bf D}=\cfrac{\ve}{2}E^2=\cfrac{\ve}{2}|\n\phi|^2. \eex$$ 电磁能量: $$\beex \bea U_{e,m}&=\cfrac{1}{2}\int_\Omega \ve|\n \phi|^2\rd V\\ &=\cfrac{1}{2}\int_\Omega -{\bf D}\cdot\n \phi\rd V\\ &=\cfrac{1}{2}\int_\Omega \Div {\bf D} \cdot \phi\rd V -\cfrac{1}{2}\int_{\p\Omega} \Div(\phi{\bf D})\rd S\\ &=\cfrac{1}{2}\int_\Omega \rho_f\phi\rd V. \eea \eeex$$

目录
相关文章
|
机器学习/深度学习 算法 机器人
图文详解牛顿迭代法,牛顿不止力学三定律
图文详解牛顿迭代法,牛顿不止力学三定律
358 0
图文详解牛顿迭代法,牛顿不止力学三定律
|
前端开发 Perl
[家里蹲大学数学杂志]第033期稳态可压Navier-Stokes方程弱解的存在性
1. 方程  考虑 $\bbR^3$ 中有界区域 $\Omega$ 上如下的稳态流动: $$\bee\label{eq} \left\{\ba{ll} \Div(\varrho\bbu)=0,\\ \Div(\varrho\bbu\otimes \bbu) -\mu\lap \bbu -(\lam...
848 0
[物理学与PDEs]第3章 磁流体力学
[物理学与PDEs]第3章第1节 等离子体   [物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正   [物理学与PDEs]第3章第2节 磁流体力学方程组 2.
704 0
|
资源调度 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}...
795 0
[物理学与PDEs]第4章 反应流体力学
[物理学与PDEs]第4章第1节 引言   [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组   [物理学与PDEs]第4章第2节 反应流体力学方程组 2.
744 0
|
资源调度 关系型数据库 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
751 0
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场
设磁场 ${\bf H}$ 只有一个非零分量, 试证明 $$\bex ({\bf H}\cdot\n){\bf H}={\bf 0}. \eex$$   证明: 不妨设 ${\bf H}=(0,0,H_3)^T$, 则 $$\bex \Div{\bf H}=0\ra \cfrac{\p H_3}{\p x_3}=0.
578 0
[物理学与PDEs]第2章 流体力学
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识   [物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组   [物理学与PDEs]第2章第1节 理想流体力学方程组 1.
790 0
[物理学与PDEs]第2章习题9 粘性流体动能的衰减
设 $\Omega\subset {\bf R}^3$ 为有界域, ${\bf u}$ 为 Navier-Stokes 方程组 (3. 4)-(3. 5) 满足边界条件 (3. 7) 的解, 其中体积力 ${\bf F}={\bf 0}$.
640 0
|
关系型数据库 RDS
[物理学与PDEs]第1章习题13 静磁场的矢势在媒质交界面上的条件
试讨论对静磁场的矢势, 如何决定其在媒质交界面上的条件.   解答: 由 $\rot{\bf A}={\bf B}$ 知 $$\bex \oint_l {\bf A}\cdot\rd {\bf l} =\int_S \rot{\bf A}\cdot{\bf n}\rd S=\int_S {\bf...
774 0