[物理学与PDEs]第1章第9节 Darwin 模型 9.2 Maxwell 方程组的一个定解问题

简介: 设 $\Omega$ 为一有界区域, 外部为理想导体 $(\sigma=+\infty)$, 则 $\Omega$ 中电磁场满足 Maxwell 方程组 $$\beex \bea \ve\cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\mu}\rot{\bf B}&=-{\bf ...

设 $\Omega$ 为一有界区域, 外部为理想导体 $(\sigma=+\infty)$, 则 $\Omega$ 中电磁场满足 Maxwell 方程组 $$\beex \bea \ve\cfrac{\p{\bf E}}{\p t}-\cfrac{1}{\mu}\rot{\bf B}&=-{\bf j},\\ \cfrac{\p{\bf B}}{\p t}+\rot{\bf E}&={\bf 0},\\ \Div{\bf E}&=\cfrac{\rho}{\ve},\\ \Div{\bf B}&=0. \eea \eeex$$ 电荷守恒律方程为 $$\bex \cfrac{\p\rho}{\p t}+\Div{\bf j}=0. \eex$$ 而边界上条件为 $$\bex {\bf E}\times{\bf n}=0,\quad \cfrac{\p}{\p t}({\bf B}\cdot {\bf n})=0,\quad\mbox{on }\p \Omega. \eex$$ 初始条件为 $$\bex {\bf E}={\bf E}_0,\quad {\bf B}={\bf B}_0,\quad\mbox{on }\sed{t=0}\times\Omega \eex$$ 须满足相容性条件: $$\beex \bea \Div{\bf E}_0=\cfrac{\rho_0}{\ve_0},&\quad\rho_0=\rho(0,x,y,z),\\ \Div{\bf B}_0=0,&\\ {\bf E}_0\times{\bf n}={\bf 0},&\quad\mbox{on }\p\Omega. \eea \eeex$$ 

目录
相关文章
|
机器学习/深度学习 传感器 算法
基于二元Frank-Copula函数的风光出力场景生成方法附Matlab代码
基于二元Frank-Copula函数的风光出力场景生成方法附Matlab代码
|
机器学习/深度学习 传感器 算法
NGO-VMD北方苍鹰算法NGO优化VMD变分模态分解 可直接运行 分解效果好 适合作为创新点
NGO-VMD北方苍鹰算法NGO优化VMD变分模态分解 可直接运行 分解效果好 适合作为创新点
|
自然语言处理
[物理学与PDEs]书中出现的向量公式汇总
P 11   1. $\rot (\phi{\bf A})=\n \phi\times{\bf A}+\phi\ \rot{\bf A}$.   2. $-\lap {\bf A}=\rot\rot {\bf A}-\n \Div{\bf A}$.
872 0
[物理学与PDEs]第5章习题9 伴随矩阵的特征值
设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2.
715 0
|
资源调度
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正
1.  Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfra...
878 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
906 0
|
资源调度
[物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1}{\sigma \mu_0}\Div{\bf A}=0, \eex$$ 则方程 (2.
639 0