[物理学与PDEs]书中出现的向量公式汇总

简介: P 11   1. $\rot (\phi{\bf A})=\n \phi\times{\bf A}+\phi\ \rot{\bf A}$.   2. $-\lap {\bf A}=\rot\rot {\bf A}-\n \Div{\bf A}$.

P 11

 

1. $\rot (\phi{\bf A})=\n \phi\times{\bf A}+\phi\ \rot{\bf A}$.

 

2. $-\lap {\bf A}=\rot\rot {\bf A}-\n \Div{\bf A}$.

 

P 20

 

3. $\Div({\bf E}\times {\bf B})=\rot {\bf E}\cdot {\bf B}-{\bf E}\cdot \rot{\bf B}$.

 

P 22

 

4. $\Div({\bf E}\otimes{\bf E})=(\Div{\bf E}){\bf E}+\rot {\bf E}\times {\bf E}+\cfrac{1}{2}\n {\bf E}^2$.

 

P 23

 

5. $\n (E^2)=\Div(E^2{\bf I})$.

 

P 53

 

6. $\Div({\bf E}\times{\bf H})={\bf H}\cdot\rot{\bf E}-{\bf E}\cdot\rot {\bf H}.$

目录
相关文章
|
人工智能 开发者
牛顿-莱布尼茨公式 | 学习笔记
快速学习牛顿-莱布尼茨公式
189 0
牛顿-莱布尼茨公式 | 学习笔记
|
算法
数理逻辑之 horn公式
Horn公式,中文名一般翻译成“霍恩公式”,也是范式的一种。 Horn原子有三: P::= ┴ | T |p Horn原子  分别是底公式、顶公式和命题原子。   Horn原子合取后的蕴含称为Horn字句: A::= P | PΛA C::= A → P ...
2506 0
[物理学与PDEs]第5章习题1 矩阵的极分解
证明引理 2. 1.    证明:   (1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}.
833 0
|
消息中间件
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}.
564 0
[物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\infty,&if\ \det{\bf F}\leq 0 \ea} \eex$$ 是多凸的.
819 0
|
资源调度
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...
1037 0
[物理学与PDEs]第5章习题9 伴随矩阵的特征值
设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2.
710 0
|
算法框架/工具
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0.
850 0
[物理学与PDEs]第3章习题7 快、慢及Alfv\'en 特征速度的比较
证明: 当 $H_1\neq 0$ 及 $H_2^2+H_3^2\neq 0$ 时, 快、慢及 Alfv\'en 特征速度 $C_f$, $C_s$ 及 $C_a$ 满足 $$\bex 0
710 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.     2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).     3.  右端项具有间断性.
692 0