[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

简介: 1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf R}{\bf U}={\bf V}{\bf R}.

1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf R}{\bf U}={\bf V}{\bf R}. \eex$$ 此称为 ${\bf F}$ 的极分解.

 

证明:

 

(1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}. \eex$$ 事实上, 由 ${\bf F}$ 可逆知 ${\bf F}^T{\bf F}$ 正定, 而存在正交阵 ${\bf Q}$, 使得 $$\bex {\bf F}^T{\bf F}={\bf Q}^T\diag(\lm_1,\cdots,\lm_n){\bf Q},\quad(\lm_i>0). \eex$$ 取 $$\bex {\bf D}=\diag(\sqrt{\lm_1},\cdots,\sqrt{\lm_n}),\quad {\bf P}={\bf F}{\bf Q}^T{\bf D}^{-1}, \eex$$ 则可直接验证 ${\bf P},{\bf Q},{\bf D}$ 适合要求.

 

(2)  取 $$\bex {\bf R}={\bf P}{\bf Q},\quad {\bf U}={\bf Q}^T{\bf D}{\bf Q},\quad {\bf V}={\bf P}{\bf D}{\bf P}^T \eex$$ 即满足条件.

 

 

2.  由 $\rd {\bf y}={\bf F}\rd{\bf x}$, ${\bf F}={\bf R}{\bf U}$ 知 $$\bex {\bf y}={\bf R}\rd{\bf z},\quad\rd {\bf z}={\bf U}\rd {\bf x}, \eex$$ 而 $\rd {\bf x}\to\rd {\bf y}$ 是 ``在三个相互正交的方向上的伸长或压缩'' 与 ``刚体旋转'' 的复合.

 

 

3.  Cauchy - Green 应变张量

 

(1)  右: ${\bf C}={\bf F}^T{\bf F}={\bf U}^2$.

 

(2)  左: ${\bf B}={\bf F}{\bf F}^T={\bf V}^2$.

 

 

4.  稳态时, 已知 Cauchy - Green 应变张量求 ${\bf y}$ 的 PDE 组称为 Beltrami 方程组 (超定).

 

 

5.  总结: ${\bf B},{\bf C}$ 表示左、右 Cauchy - Green 应变张量, ${\bf F}$ 表示变形. 

目录
相关文章
|
6月前
技术心得:曲率计算公式推导
技术心得:曲率计算公式推导
92 0
|
机器学习/深度学习 传感器 算法
基于有限差分法和追赶法解对角矩阵解二维热传导问题附matlab代码
基于有限差分法和追赶法解对角矩阵解二维热传导问题附matlab代码
|
机器学习/深度学习 传感器 算法
【特征选择】时变正弦和 V 形传递函数 (BMPA-TVSinV) 的新型二元海洋捕食者算法附matlab代码
【特征选择】时变正弦和 V 形传递函数 (BMPA-TVSinV) 的新型二元海洋捕食者算法附matlab代码
|
编解码
学习:泰勒级数插值的多光谱马赛克图像复原方法综述
学习:泰勒级数插值的多光谱马赛克图像复原方法综述
352 0
学习:泰勒级数插值的多光谱马赛克图像复原方法综述
凸优化理论基础1--仿射集
凸优化理论基础1--仿射集
374 0
凸优化理论基础1--仿射集
|
机器学习/深度学习 算法
[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量
1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$     2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}.
1248 0
|
资源调度 BI
[物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量       5. 3. 1 质量守恒定律    $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$   5.
608 0
[物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量
$$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为变形梯度张量.
833 0
|
资源调度
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...
1045 0