[再寄小读者之数学篇](2014-05-27 无穷乘积的计算)

简介: (from yqs210)$$(1+\frac{1}{1*2}) (1+\frac{1}{2*3}) (1+\frac{1}{3*4}).......(1+\frac{1}{n*(n+1)}) =? $$$$(1+\frac{1}{1^2} )(1+\frac{1}{2^2} )(1+\frac{1}{3^2} ).

(from yqs210)
$$(1+\frac{1}{1*2}) (1+\frac{1}{2*3}) (1+\frac{1}{3*4}).......(1+\frac{1}{n*(n+1)}) =? $$
$$(1+\frac{1}{1^2} )(1+\frac{1}{2^2} )(1+\frac{1}{3^2} )......(1+\frac{1}{n^2} )=?$$
$$(1+\frac{1}{2^1} )(1+\frac{1}{2^2} )(1+\frac{1}{2^3} )......(1+\frac{1}{2^n} )=?$$

或者

$$(1+p_1)(1+p_2)(1+p_3)......(1+p_n)=?$$
其中 $\lim_{ n\to \infty} \frac{\ln (1+p_n)}{p_n}=1$.

说明: $(1+p_1)(1+p_2)(1+p_3)......(1+p_n)$的收敛性与 $\sum_{k=1}^n p_k$相同, 但是和不同.

其中两边取对数的方法, 并使用 $\lim_{ n\to \infty} \frac{\ln (1+p_n)}{p_n}=1$, 可知三数列积是收敛的.

目录
相关文章
∞(无穷)在数学中指的是什么
∞(无穷)在数学中指的是什么
160 0
[再寄小读者之数学篇](2014-12-24 乘积型不等式)
$$\bex \int f^2g \leq C\sen{f}_{L^2}^\frac{5q-4}{3q-2} \sen{\p_3f}_{L^q}^\frac{q}{3q-2} \sen{g}_{L^2}^\frac{q-2}{3q-2} \sen{\n_hg}_{L^2}^\frac{2q}{3q-...
842 0
[再寄小读者之数学篇](2014-11-19 关于平方数的交叉和的两个代数等式)
For $n\geq 1$ to be an integer, $$\bex (2n)^2-(2n+1)^2+\cdots+(4n)^2 =-(4n+1)^2+\cdots+(6n)^2, \eex$$ $$\bex (2n+1)^2-(2n+2)^2+\cdots+(4n-1)^2 =-(4n)^2+(4n+1)^2-\cdots+(6n-1)^2.
769 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 多项式)
多项式 $$\bex p(z)=z^n+a_{n-1}x^{n-1}+\cdots+a_0 \eex$$ 的根的估计.
581 0
[再寄小读者之数学篇](2014-11-14 矩阵的应用: 代数)
Hilbert 零点定理: 设 $\bbF$ 是一个代数闭域, $L$ 是 $\bbF[x_1,\cdots,x_n]$ 的一个真理想, 则 $$\bex \exists\ (a_1,\cdots,a_n)\in\bbF^n\ra f(a_1,\cdots,a_n)=0,\quad\forall\ f\in L.
655 0
[再寄小读者之数学篇](2014-11-02 平方和公式在正定矩阵上的推广)
一般, 我们有 $$\bex a,b>0\ra 2ab\leq a^2+b^2. \eex$$ 但这个在正定矩阵中没有推广. 毕竟我们已有结论 ($A>0$ 表示 $A$ 正定) $$\bex A,B>0\not\ra AB\mbox{ 正定}.
832 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-10-18 利用 Lagrange 中值定理求极限)
试求 $$\bex \vlm{n}n^2\sex{x^\frac{1}{n}-x^\frac{1}{n+1}},\quad x>0. \eex$$   解答: $$\beex \bea \mbox{原极限} &=\vlm{n}n^2\cdot x^\xi\ln x\sex{\frac{1}{n}...
634 0
|
机器学习/深度学习
[再寄小读者之数学篇](2014-07-17 行列式的计算)
试计算矩阵 $A=(\sin(\al_i+\al_j))_{n\times n}$ ($n\geq2$) 的行列式.   提示:  根据行列式的性质: (1) 行列式两列线性相关, 则行列式为零; (2) 若记第 $k$ 列为向量 $\al$ 的行列式为 $D(\al)$, 则 $$\b...
733 0
[再寄小读者之数学篇](2014-07-16 任意阶导数在零处为零的一个充分条件)
设 $f(x)$ 在 $\bbR$ 上任意阶可导, 且 $$\bex \forall\ n\in\bbZ^+,\ f\sex{\frac{1}{n}}=0. \eex$$ 试证: $f^{(n)}(0)=0$.
871 0