[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.9

简介: 证明: 若有 $\al>0$, 使当 $n\geq n_0$ 时, $\dps{\frac{\ln \frac{1}{a_n}}{\ln n}\geq 1+\al\ (a_n>0)}$, 则级数 $\dps{\vsm{n}a_n\ (a_n>0)}$ 收敛; 若 $n\geq n_0$ 时, $\d...

证明: 若有 $\al>0$, 使当 $n\geq n_0$ 时, $\dps{\frac{\ln \frac{1}{a_n}}{\ln n}\geq 1+\al\ (a_n>0)}$, 则级数 $\dps{\vsm{n}a_n\ (a_n>0)}$ 收敛; 若 $n\geq n_0$ 时, $\dps{\frac{\ln \frac{1}{a_n}}{\ln n}\leq 1}$, 则这级数发散 (对数判别法).

 

证明:

 

(1). $$\bex \frac{\ln \frac{1}{a_n}}{\ln n}\geq 1+\al\ra \ln \frac{1}{a_n}\geq \ln n^{1+\al} \ra a_n\leq \frac{1}{n^{1+\al}}\ (\al>0). \eex$$

 

(2). $$\bex \frac{\ln \frac{1}{a_n}}{\ln n}\leq 1\ra a_n\geq \frac{1}{n}. \eex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.12
证明: 若 $f(x)$ 为 $[0,1]$ 上的连续函数, 且对一切 $x\in [0,1]$ 有 $\dps{\int_0^x f(u)\rd u\geq f(x)\geq 0}$, 则 $f(x)\equiv 0$.
802 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.22
设 $f\in C[0,1]$ (即 $f$ 在 $[0,1]$ 上连续), 且在 $(0,1)$ 上可微, 若有 $\dps{8\int_\frac{7}{8}^1 f(x)\rd x=f(0)}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f'(\xi)=0$.
772 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.20
设 $a>0$, 函数 $f(x)$ 在 $[0,a]$ 上连续可微, 证明: $$\bex |f(0)|\leq \frac{1}{a}\int_0^a |f(x)|\rd x+\int_0^a |f'(x)|\rd x.
835 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.21
设 $f(x)$ 的一阶导数在 $[0,1]$ 上连续, 且 $f(0)=f(1)=0$, 求证: $\dps{\sev{\int_0^1 f(x)\rd x}\leq \frac{1}{4}\max_{0\leq x\leq 1}|f'(x)|}$.
709 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.25
对函数 $$\bex \zeta(s)=\vsm{n}\frac{1}{n^s}\quad\sex{s>1}, \eex$$ 证明: $\dps{\zeta(s)=s\int_1^\infty \frac{\sez{x}}{x^{s+1}}\rd x}$, 其中 $\sez{x}$ 为 $x$ 的整数部分.
655 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.26
(1). 求证: 当 $s>0$ 时, $\dps{\int_1^\infty \frac{x-[x]}{x^{s+1}}\rd x}$ 收敛;   (2). 求证: 当 $s>1$ 时, $$\bex \int_1^\infty \frac{x-[x]}{x^{s+1}}\rd x=\frac{1}{s-1}-\frac{1}{s}\vsm{n}\frac{1}{n^s}.
789 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.27
求 $\dps{\lim_{t\to +\infty}\sex{\frac{1}{t} +\frac{2t}{t^2+1^2}+\frac{2t^2}{t^2+2^2}+\cdots+\frac{2t}{t^2+n^2}+\cdots}}$.
621 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.6
证明下列级数收敛:   (1). $\dps{\vsm{n}\sez{\frac{1}{n}-\ln\sex{1+\frac{1}{n}}}}$;   (2). $\dps{\vsm{n}\sez{e-\sex{1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}}}}$.
812 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.15
设 $\varphi(x)$ 是 $(-\infty,+\infty)$ 上的连续周期函数, 周期为 $1$, 且 $\dps{\int_0^1 \varphi(x)\rd x=0}$, $f(x)$ 在 $[0,1]$ 上可微, 且有连续的一阶导数, $$\bex a_n=\int_0^1 f(x)\varphi(nx)\rd x,\quad n=1,2,\cdots.
897 0