POJ 1844 Sum

简介: DescriptionConsider the natural numbers from 1 to N. By associating to each number a sign (+ or -) and calculating the value of this expression we obtain a sum S.

Description

Consider the natural numbers from 1 to N. By associating to each number a sign (+ or -) and calculating the value of this expression we obtain a sum S. The problem is to determine for a given sum S the minimum number N for which we can obtain S by associating signs for all numbers between 1 to N.

For a given S, find out the minimum value N in order to obtain S according to the conditions of the problem.
Input

The only line contains in the first line a positive integer S (0< S <= 100000) which represents the sum to be obtained.
Output

The output will contain the minimum number N for which the sum S can be obtained.
Sample Input

12
Sample Output

7

第一次知道了,打表法原来也是要消耗时间的,只是相对少些;
还有,用scanf输入比用cin输入要节约时间;scanf是格式化输入,printf是格式化输出。
cin是输入流,cout是输出流。效率稍低,但书写简便。
格式化输出效率比较高,但是写代码麻烦。
流输出操作效率稍低,但书写简便。
cout之所以效率低,是先把要输出的东西存入缓冲区,再输出,导致效率降低。

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MAXX 100010
using namespace std;
int a[MAXX];
void aa()
{
    a[0]=0;
    for(int j=1; j<=MAXX; j++)
    {
        a[j]=a[j-1]+j;
    }
}
int main()
{
    aa();
    int n;
    scanf("%d",&n);
    int k;
    for(int j=1;j<n; j++)
    {
        if(a[j]>=n)
        {
            k=a[j]-n;
            if(k%2==0)
            {
                printf("%d\n",j);
                return 0;
            }
        }
    }
    return 0;
}
目录
相关文章
|
算法
poj 2479 Maximum sum(求最大子段和的延伸)
看完最大连续子段和 的 dp算法 这个很容易理解,我用dplift[i]保存第1到第i个之间的最大子段和,dpright[i]保存第i到第n个之间的最大子段和,最终结果就是dplift[i]+dpright[i+1]中最大的一个。
56 0
|
8月前
|
人工智能 Java
HDU-1003- Max Sum (动态规划)
HDU-1003- Max Sum (动态规划)
48 0
|
算法
poj 1050 To the Max(最大子矩阵之和)
poj 1050 To the Max(最大子矩阵之和)
45 0
POJ-2389,Bull Math(大数乘法)
POJ-2389,Bull Math(大数乘法)
POJ 1844 Sum
POJ 1844 Sum
108 0
|
机器学习/深度学习
POJ 1775 (ZOJ 2358) Sum of Factorials
POJ 1775 (ZOJ 2358) Sum of Factorials
153 0
面试题:sum=1+2-3+4-5...+m 公式:sum=2-m/2
sum=1+2-3+4-5...+m 公式:sum=2-m/2
810 0
|
安全
D-POJ-3126 Prime Path
Description The ministers of the cabinet were quite upset by the message from the Chief of...
1130 0