Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 161294 Accepted Submission(s): 37775
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
Author
Ignatius.L
Recommend
题意:给出n个数的序列,求出最大的子串和。并输出起点和终点。
思路:dp[i]表示以i为结尾的最大子串和。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <vector> #include <set> #include <queue> #pragma comment (linker,"/STACK:102400000,102400000") #define maxn 100005 #define MAXN 2005 #define mod 1000000009 #define INF 0x3f3f3f3f #define pi acos(-1.0) #define eps 1e-6 #define lson rt<<1,l,mid #define rson rt<<1|1,mid+1,r #define FRE(i,a,b) for(i = a; i <= b; i++) #define FRL(i,a,b) for(i = a; i < b; i++) #define mem(t, v) memset ((t) , v, sizeof(t)) #define sf(n) scanf("%d", &n) #define sff(a,b) scanf("%d %d", &a, &b) #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c) #define pf printf #define DBG pf("Hi\n") typedef long long ll; using namespace std; int dp[maxn]; //dp[i]表示以i为结尾的最大子串和 int a[maxn]; int n; int main() { int i,j,t,cas=1;; sf(t); bool flag=false; while (t--) { if (flag) pf("\n"); flag=true; sf(n); FRL(i,1,n+1) sf(a[i]); mem(dp,0); dp[1]=a[1]; int S=1,T=1,s=1,t=1,maxx=a[1];//s,t记录当前首尾指针。S。T记录当前最大值的首尾指针 FRL(i,2,n+1) { if (a[i]>dp[i-1]+a[i]) //假设a[i]对dp[i-1]没有贡献反而会使dp[i-1]减小,那么就以i又一次作为起点 { s=i; t=i; dp[i]=a[i]; } else if (a[i]<=dp[i-1]+a[i]) //a[i]比dp[i-1]+a[i]更大,就将尾指针t向后移赋为i { t=i; dp[i]=dp[i-1]+a[i]; //更dp[i] } if (dp[i]>maxx) //假设当前dp[i]比之前的最大值要大,更新最大值,并记录首尾指针 { S=s; T=t; maxx=dp[i]; } } pf("Case %d:\n",cas++); pf("%d %d %d\n",maxx,S,T); } return 0; }
本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5077522.html,如需转载请自行联系原作者