D-POJ-3126 Prime Path

简介: Description The ministers of the cabinet were quite upset by the message from the Chief of...

Description
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.

Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don’t know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on… Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Sample Input
3
1033 8179
1373 8017
1033 1033

Sample Output
6
7
0

BFS,将素数打表可以缩短运行时间。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;

#define maxn 10005
bool vis[maxn];          //标记是否访问
bool IsPrime[maxn];      //标记素数

void Prime(){   //素数筛法
    IsPrime[0]=IsPrime[1]=false;IsPrime[2]=true;
    for(int i=3;i<maxn;i++){
        if(i%2)
            IsPrime[i]=true;
        else
            IsPrime[i]=false;
    }
    int m=sqrt(maxn*1.0);
    for(int i=3;i<m;i++){
        if(IsPrime[i]){
            for(int j=i;j<maxn;j+=i)
                IsPrime[j]=false;
        }
    }
}

struct Node{
    int p[4];
    int step;
};


void BFS(int a,int b){
    memset(vis, false, sizeof(vis));
    Node now,next;
    int x;
    queue<Node>Q;
    now.p[0]=a/1000;now.p[1]=a%1000/100;now.p[2]=a%100/10;now.p[3]=a%10;
    now.step=0;
    Q.push(now);
    while(!Q.empty()){
        now=Q.front();
        Q.pop();
        if(now.p[0]*1000+now.p[1]*100+now.p[2]*10+now.p[3]==b){
            printf("%d\n",now.step);
            return;
        }
        for(int i=0;i<=3;i++){
            for(int j=0;j<=9;j++){
                if(i==0&&j==0)
                    continue;
                if(now.p[i]==j)
                    continue;
                next.p[0]=now.p[0];
                next.p[1]=now.p[1];
                next.p[2]=now.p[2];
                next.p[3]=now.p[3];
                next.p[i]=j;
                x=next.p[0]*1000+next.p[1]*100+next.p[2]*10+next.p[3];
                if(!vis[x]&&IsPrime[x]){
                    next.step=now.step+1;
                    vis[x]=true;
                    Q.push(next);
                }
            }
        }
    }
    printf("Impossible\n");
}

int main(){
    Prime();
    int n,a,b;
    scanf("%d",&n);
    while(n--){
        scanf("%d%d",&a,&b);
        BFS(a,b);
    }
    return 0;
}

开始不管怎么运行都是输出Impossible,后来发现Prim函数没运行,蠢哭~

目录
相关文章
|
Java
hdu1016 Prime Ring Problem【素数环问题(经典dfs)】
hdu1016 Prime Ring Problem【素数环问题(经典dfs)】
47 0
|
人工智能
poj 2299 Ultra-QuickSort 求逆序数 树状数组解法
所谓离散化,我们的了解就是对原数组排序,然后用所在位置的下标代替原数,这样我们就可以把数据范围缩小到1-500000,这个数组是开的下的。
43 0
UVa11679 - Sub-prime
UVa11679 - Sub-prime
54 0
HDU-1016,Prime Ring Problem(DFS+素数)
HDU-1016,Prime Ring Problem(DFS+素数)
|
算法
POJ 1844 Sum
POJ 1844 Sum
104 0
|
机器学习/深度学习
POJ 1775 (ZOJ 2358) Sum of Factorials
POJ 1775 (ZOJ 2358) Sum of Factorials
145 0
|
人工智能
POJ 1844 Sum
Description Consider the natural numbers from 1 to N. By associating to each number a sign (+ or -) and calculating the value of this expression we obtain a sum S.
817 0