PostgreSQL distinct 与 Greenplum distinct 的实现与优化

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
简介:

标签

PostgreSQL , distinct , 多distinct , groupagg , hashagg , sort , hyperloglog , 估值


背景

求distinct是业务的一个普遍需求,例如每天有多少用户,每个省份有多少用户,每天有多少类目的用户等。

select date,count(dinstinct user) from tbl group by date;  
  
select date, province, count(distinct user) from tbl group by 1,2;  
  
select date, count(dinstnct user), count(distinct class) from tbl group by 1;  

distinct是一个求唯一值个数的需求,如果你不需要精确值的话,你还可以选择一些估值计算方法:

《Greenplum 最佳实践 - 估值插件hll的使用(以及hll分式聚合函数优化)》

《PostgreSQL hll (HyperLogLog) extension for "State of The Art Cardinality Estimation Algorithm" - 3》

《PostgreSQL hll (HyperLogLog) extension for "State of The Art Cardinality Estimation Algorithm" - 2》

《PostgreSQL hll (HyperLogLog) extension for "State of The Art Cardinality Estimation Algorithm" - 1》

《秒级任意维度分析1TB级大表 - 通过采样估值满足高效TOP N等统计分析需求》

《妙用explain Plan Rows快速估算行》

《PostgreSQL pg_stats used to estimate top N freps values and explain rows》

本文主要分析一下PostgreSQL和Greenplum的distinct 算法:

hashagg和groupagg

hashagg和groupagg观察模型

为了便于观察,我们需要创建一张测试表,灌入1亿条测试记录。

create table tbl(c1 int, c2 int, c3 int, c4 int);  
  
insert into tbl select random()*1000, random()*1000, random()*100, random()*100 from generate_series(1,100000000);  

distinct语句

1、

select c1,c2,count(distinct c3) from tbl group by c1,c2;  

2、

select c1,c2,count(distinct c3),count(distinct c4) from tbl group by c1,c2;  

3、

select c1,c2,count(distinct (c3,c4)) from tbl group by c1,c2;  

distinct替换语句

1、

select c1,c2,count(*) cn from (select c1,c2,c3 from tbl group by c1,c2,c3) t group by c1,c2;  

2、

select t1.c1, t1.c2, t1.cn as c3, t2.cn as c4 from  
  (select c1,c2,count(*) cn from (select c1,c2,c3 from tbl group by c1,c2,c3) t group by c1,c2) t1  
join  
  (select c1,c2,count(*) cn from (select c1,c2,c4 from tbl group by c1,c2,c4) t group by c1,c2) t2  
on (  
  NOT t1.c1 IS DISTINCT FROM t2.c1   
  AND   
  NOT t1.c2 IS DISTINCT FROM t2.c2  
);  

3、

select c1,c2,count(*) cn from (select c1,c2,row(c3,c4) from tbl group by c1,c2,row(c3,c4)) t group by c1,c2;  

PostgreSQL distinct 语句的算法

目前PostgreSQL 求distinct仅支持groupAgg,从源码可以看到,是通过排序去重来实现的:

src/backend/executor/nodeAgg.c

 *        If a normal aggregate call specifies DISTINCT or ORDER BY, we sort the  
 *        input tuples and eliminate duplicates (if required) before performing  
 *        the above-depicted process.  (However, we don't do that for ordered-set  
 *        aggregates; their "ORDER BY" inputs are ordinary aggregate arguments  
 *        so far as this module is concerned.)  Note that partial aggregation  
 *        is not supported in these cases, since we couldn't ensure global  
 *        ordering or distinctness of the inputs.  
        Tuplesortstate **sortstates;    /* sort objects, if DISTINCT or ORDER BY */  
  
/*  
 * Run the transition function for a DISTINCT or ORDER BY aggregate  
 * with only one input.  This is called after we have completed  
 * entering all the input values into the sort object.  We complete the  
 * sort, read out the values in sorted order, and run the transition  
 * function on each value (applying DISTINCT if appropriate).  
 *  
 * Note that the strictness of the transition function was checked when  
 * entering the values into the sort, so we don't check it again here;  
 * we just apply standard SQL DISTINCT logic.  
 *  
 * The one-input case is handled separately from the multi-input case  
 * for performance reasons: for single by-value inputs, such as the  
 * common case of count(distinct id), the tuplesort_getdatum code path  
 * is around 300% faster.  (The speedup for by-reference types is less  
 * but still noticeable.)  
 *  
 * This function handles only one grouping set (already set in  
 * aggstate->current_set).  
 *  
 * When called, CurrentMemoryContext should be the per-query context.  
 */  
static void  
process_ordered_aggregate_single(AggState *aggstate,  
                                                                 AggStatePerTrans pertrans,  
                                                                 AggStatePerGroup pergroupstate)  
{  
  
  
  
/*  
 * Run the transition function for a DISTINCT or ORDER BY aggregate  
 * with more than one input.  This is called after we have completed  
 * entering all the input values into the sort object.  We complete the  
 * sort, read out the values in sorted order, and run the transition  
 * function on each value (applying DISTINCT if appropriate).  
 *  
 * This function handles only one grouping set (already set in  
 * aggstate->current_set).  
 *  
 * When called, CurrentMemoryContext should be the per-query context.  
 */  
static void  
process_ordered_aggregate_multi(AggState *aggstate,  
                                                                AggStatePerTrans pertrans,  
                                                                AggStatePerGroup pergroupstate)  
{  

执行计划如下,排序后,走GroupAggregate的计划。

postgres=#  explain (verbose,summary) select c1,c2,count(distinct c3),count(distinct c4),count(distinct (c3,c4)) from tbl group by c1,c2;  
                                      QUERY PLAN                                         
---------------------------------------------------------------------------------------  
 GroupAggregate  (cost=1407453.56..1496253.56 rows=555000 width=32)  
   Output: c1, c2, count(DISTINCT c3), count(DISTINCT c4), count(DISTINCT ROW(c3, c4))  
   Group Key: tbl.c1, tbl.c2  
   ->  Sort  (cost=1407453.56..1421328.56 rows=5550000 width=16)  
         Output: c1, c2, c3, c4  
         Sort Key: tbl.c1, tbl.c2  
         ->  Seq Scan on public.tbl  (cost=0.00..596041.00 rows=5550000 width=16)  
               Output: c1, c2, c3, c4  
 Planning time: 0.110 ms  
(9 rows)  

如果要让PostgreSQL求distinct走hashAgg,需要换SQL写法,后面提到。

Greenplum distinct 语句的PLAN

Greenplum则同时支持hashAgg和groupAgg求distinct。

1、hashagg

postgres=# explain analyze select c1,c2,count(distinct c3) from tbl group by c1,c2;  
                                                                             QUERY PLAN                                                                               
--------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice2; segments: 48)  (cost=2748912.00..2761424.50 rows=1001000 width=16)  
   Rows out:  1002001 rows at destination with 5071 ms to end, start offset by 1.784 ms.  
   ->  HashAggregate  (cost=2748912.00..2761424.50 rows=20855 width=16)  
         Group By: partial_aggregation.c1, partial_aggregation.c2  
         Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.004 ms to first row, 223 ms to end, start offset by 4.338 ms.  
         ->  HashAggregate  (cost=2448912.00..2573912.00 rows=208334 width=12)  
               Group By: tbl.c1, tbl.c2, tbl.c3  
               Rows out:  Avg 1320761.3 rows x 48 workers.  Max 1323529 rows (seg9) with 0.002 ms to first row, 3120 ms to end, start offset by 4.491 ms.  
               ->  Redistribute Motion 48:48  (slice1; segments: 48)  (cost=2048912.00..2248912.00 rows=208334 width=12)  
                     Hash Key: tbl.c1, tbl.c2  
                     Rows out:  Avg 2061921.2 rows x 48 workers at destination.  Max 2066345 rows (seg31) with 1229 ms to end, start offset by 59 ms.  
                     ->  HashAggregate  (cost=2048912.00..2048912.00 rows=208334 width=12)  
                           Group By: tbl.c1, tbl.c2, tbl.c3  
                           Rows out:  Avg 2061921.2 rows x 48 workers.  Max 2062196 rows (seg24) with 0.006 ms to first row, 1706 ms to end, start offset by 59 ms.  
                           ->  Append-only Columnar Scan on tbl  (cost=0.00..1048912.00 rows=2083334 width=12)  
                                 Rows out:  0 rows (seg0) with 39 ms to end, start offset by 56 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 359K bytes.  
   (slice1)    Executor memory: 1053K bytes avg x 48 workers, 1053K bytes max (seg0).  
   (slice2)    Executor memory: 396K bytes avg x 48 workers, 396K bytes max (seg0).  
 Statement statistics:  
   Memory used: 128000K bytes  
 Settings:  enable_bitmapscan=off; enable_seqscan=off; optimizer=off  
 Optimizer status: legacy query optimizer  
 Total runtime: 5106.665 ms  
(25 rows)  

2、groupagg

先按distinct字段重分布,使用groupagg得到结果

然后按分组字段重分布,再次得到groupagg结果

这个分布式执行计划有点问题,理论上可以直接按分组字段重分布,然后进行groupagg。

postgres=# set enable_hashagg =off;  
SET  
  
postgres=# explain analyze select c1,c2,count(distinct c3) from tbl group by c1,c2;  
                                                                               QUERY PLAN                                                                                  
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice3; segments: 48)  (cost=23755578.10..23788110.60 rows=1001000 width=16)  
   Rows out:  1002001 rows at destination with 13064 ms to end, start offset by 245 ms.  
   ->  GroupAggregate  (cost=23755578.10..23788110.60 rows=20855 width=16)  
         Group By: tbl.c1, tbl.c2  
         Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.002 ms to first row, 208 ms to end, start offset by 250 ms.  
         ->  Sort  (cost=23755578.10..23758080.60 rows=20855 width=16)  
               Sort Key: tbl.c1, tbl.c2  
               Rows out:  Avg 727938.4 rows x 48 workers.  Max 729557 rows (seg1) with 0 ms to end, start offset by 247 ms.  
               Executor memory:  46266K bytes avg, 46266K bytes max (seg0).  
               Work_mem used:  46266K bytes avg, 46266K bytes max (seg0). Workfile: (48 spilling, 0 reused)  
               Work_mem wanted: 62546K bytes avg, 62686K bytes max (seg1) to lessen workfile I/O affecting 48 workers.  
               ->  Redistribute Motion 48:48  (slice2; segments: 48)  (cost=22623280.88..23655813.38 rows=20855 width=16)  
                     Hash Key: tbl.c1, tbl.c2  
                     Rows out:  Avg 727938.4 rows x 48 workers at destination.  Max 729557 rows (seg1) with 12518 ms to end, start offset by 247 ms.  
                     ->  GroupAggregate  (cost=22623280.88..23635793.38 rows=20855 width=16)  
                           Group By: tbl.c1, tbl.c2  
                           Rows out:  Avg 852220.6 rows x 41 workers.  Max 983342 rows (seg9) with 0.003 ms to first row, 2574 ms to end, start offset by 250 ms.  
                           ->  Sort  (cost=22623280.88..22873280.88 rows=2083334 width=12)  
                                 Sort Key: tbl.c1, tbl.c2  
                                 Rows out:  Avg 2439024.4 rows x 41 workers.  Max 4003392 rows (seg44) with 0.001 ms to end, start offset by 257 ms.  
                                 Executor memory:  37148K bytes avg, 43851K bytes max (seg0).  
                                 Work_mem used:  37148K bytes avg, 43851K bytes max (seg0). Workfile: (40 spilling, 0 reused)  
                                 Work_mem wanted: 137587K bytes avg, 221435K bytes max (seg44) to lessen workfile I/O affecting 40 workers.  
                                 ->  Redistribute Motion 48:48  (slice1; segments: 48)  (cost=0.00..3048912.00 rows=2083334 width=12)  
                                       Hash Key: tbl.c3  
                                       Rows out:  Avg 2439024.4 rows x 41 workers at destination.  Max 4003392 rows (seg44) with 8081 ms to end, start offset by 257 ms.  
                                       ->  Append-only Columnar Scan on tbl  (cost=0.00..1048912.00 rows=2083334 width=12)  
                                             Rows out:  0 rows (seg0) with 23 ms to end, start offset by 256 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 362K bytes.  
   (slice1)    Executor memory: 1489K bytes avg x 48 workers, 1489K bytes max (seg0).  
   (slice2)  * Executor memory: 38329K bytes avg x 48 workers, 45109K bytes max (seg0).  Work_mem: 43851K bytes max, 221435K bytes wanted.  
   (slice3)  * Executor memory: 46597K bytes avg x 48 workers, 46597K bytes max (seg0).  Work_mem: 46266K bytes max, 62686K bytes wanted.  
 Statement statistics:  
   Memory used: 128000K bytes  
   Memory wanted: 664802K bytes  
 Settings:  enable_bitmapscan=off; enable_hashagg=off; enable_seqscan=off; optimizer=off  
 Optimizer status: legacy query optimizer  
 Total runtime: 13318.578 ms  
(39 rows)  

对于不需要重分布的表(当group字段与分布键一致),不会有执行计划问题:

优先选择了groupagg

postgres=# explain analyze select c1,c2,count(distinct c3) from tbl1 group by c1,c2;  
                                                                 QUERY PLAN                                                                    
---------------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice1; segments: 48)  (cost=20623288.88..21635826.40 rows=1003002 width=16)  
   Rows out:  1002001 rows at destination with 6896 ms to end, start offset by 1.285 ms.  
   ->  GroupAggregate  (cost=20623288.88..21635826.40 rows=20896 width=16)  
         Group By: c1, c2  
         Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.003 ms to first row, 995 ms to end, start offset by 39 ms.  
         ->  Sort  (cost=20623288.88..20873288.88 rows=2083334 width=12)  
               Sort Key: c1, c2  
               Rows out:  Avg 2083333.3 rows x 48 workers.  Max 2087802 rows (seg31) with 0.002 ms to end, start offset by 38 ms.  
               Executor memory:  67386K bytes avg, 67386K bytes max (seg0).  
               Work_mem used:  67386K bytes avg, 67386K bytes max (seg0). Workfile: (48 spilling, 0 reused)  
               Work_mem wanted: 130193K bytes avg, 130472K bytes max (seg31) to lessen workfile I/O affecting 48 workers.  
               ->  Append-only Columnar Scan on tbl1  (cost=0.00..1048920.00 rows=2083334 width=12)  
                     Rows out:  0 rows (seg0) with 5555 ms to end, start offset by 38 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 347K bytes.  
   (slice1)  * Executor memory: 67984K bytes avg x 48 workers, 67984K bytes max (seg0).  Work_mem: 67386K bytes max, 130472K bytes wanted.  
 Statement statistics:  
   Memory used: 128000K bytes  
   Memory wanted: 261142K bytes  
 Settings:  enable_bitmapscan=off; enable_hashagg=on; enable_seqscan=off; optimizer=off  
 Optimizer status: legacy query optimizer  
 Total runtime: 6897.348 ms  
(22 rows)  

Greenplum 通过开关,可以打开控制使用hashagg后groupagg,实际上还是hashagg更快。

postgres=# set enable_groupagg =off;  
SET  
postgres=# set enable_hashagg =on;  
SET  
  
postgres=# explain analyze select c1,c2,count(distinct c3) from tbl1 group by c1,c2;  
                                                                         QUERY PLAN                                                                            
-------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice1; segments: 48)  (cost=2548920.00..2561457.52 rows=1003002 width=16)  
   Rows out:  1002001 rows at destination with 3002 ms to end, start offset by 1.252 ms.  
   ->  HashAggregate  (cost=2548920.00..2561457.52 rows=20896 width=16)  
         Group By: partial_aggregation.c1, partial_aggregation.c2  
         Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.005 ms to first row, 140 ms to end, start offset by 52 ms.  
         ->  HashAggregate  (cost=2248920.00..2373920.00 rows=208334 width=12)  
               Group By: tbl1.c1, tbl1.c2, tbl1.c3  
               Rows out:  Avg 1320761.3 rows x 48 workers.  Max 1323529 rows (seg9) with 0.004 ms to first row, 875 ms to end, start offset by 15 ms.  
               ->  HashAggregate  (cost=2048920.00..2048920.00 rows=208334 width=12)  
                     Group By: tbl1.c1, tbl1.c2, tbl1.c3  
                     Rows out:  Avg 1320761.3 rows x 48 workers.  Max 1323529 rows (seg9) with 0.004 ms to first row, 1479 ms to end, start offset by 15 ms.  
                     ->  Append-only Columnar Scan on tbl1  (cost=0.00..1048920.00 rows=2083334 width=12)  
                           Rows out:  0 rows (seg0) with 48 ms to end, start offset by 49 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 347K bytes.  
   (slice1)    Executor memory: 598K bytes avg x 48 workers, 598K bytes max (seg0).  
 Statement statistics:  
   Memory used: 128000K bytes  
 Settings:  enable_bitmapscan=off; enable_groupagg=off; enable_hashagg=on; enable_seqscan=off; enable_sort=off; optimizer=off  
 Optimizer status: legacy query optimizer  
 Total runtime: 3060.036 ms  
(21 rows)  

PostgreSQL distinct 的优化

为了让PostgreSQL 求distinct使用hashagg,目前可以修改SQL来实现。(将来的PostgreSQL版本,理论上通过sql rewrite,很容易实现distinct SQL的hashagg)

postgres=# set work_mem='32GB';  
SET  
  
postgres=# explain select c1,c2,count(*) cn from (select c1,c2,c3 from tbl group by c1,c2,c3) t group by c1,c2;  
                                QUERY PLAN                                   
---------------------------------------------------------------------------  
 HashAggregate  (cost=652928.50..653328.50 rows=40000 width=16)  
   Group Key: tbl.c1, tbl.c2  
   ->  HashAggregate  (cost=637666.00..643216.00 rows=555000 width=12)  
         Group Key: tbl.c1, tbl.c2, tbl.c3  
         ->  Seq Scan on tbl  (cost=0.00..596041.00 rows=5550000 width=12)  
(5 rows)  

并行计算

Greenplum就不用说了,已经是MPP的架构,对于这类AP查询,性能非常卓越。

PostgreSQL 也支持并行计算,无论是hashagg还是groupagg,但是目前这两块的优化器执行器还可以改进,目前没有很好的发挥并行计算的能力。

postgres=# explain select c1,c2,count(*) cn from (select c1,c2,c3 from tbl group by c1,c2,c3) t group by c1,c2;  
                                              QUERY PLAN                                                
------------------------------------------------------------------------------------------------------  
 GroupAggregate  (cost=888153.09..1057837.13 rows=40000 width=16)  
   Group Key: tbl.c1, tbl.c2  
   ->  Group  (cost=888153.09..1047724.63 rows=555000 width=12)  
         Group Key: tbl.c1, tbl.c2, tbl.c3  
         ->  Gather Merge  (cost=888153.09..1039399.63 rows=1110000 width=12)  
               Workers Planned: 2  
               ->  Group  (cost=887153.07..910278.07 rows=555000 width=12)  
                     Group Key: tbl.c1, tbl.c2, tbl.c3  
                     ->  Sort  (cost=887153.07..892934.32 rows=2312500 width=12)  
                           Sort Key: tbl.c1, tbl.c2, tbl.c3  
                           ->  Parallel Seq Scan on tbl  (cost=0.00..563666.00 rows=2312500 width=12)  
(11 rows)  
postgres=# explain select c1,c2,count(*) cn from (select c1,c2,c3 from tbl group by c1,c2,c3) t group by c1,c2;  
                                       QUERY PLAN                                          
-----------------------------------------------------------------------------------------  
 HashAggregate  (cost=600203.50..600603.50 rows=40000 width=16)  
   Group Key: tbl.c1, tbl.c2  
   ->  HashAggregate  (cost=584941.00..590491.00 rows=555000 width=12)  
         Group Key: tbl.c1, tbl.c2, tbl.c3  
         ->  Gather  (cost=0.00..543316.00 rows=5550000 width=12)  
               Workers Planned: 20  
               ->  Parallel Seq Scan on tbl  (cost=0.00..543316.00 rows=277500 width=12)  
(7 rows)  

一个SQL多个求distinct

一个SQL中,包含多个distinct时,优化器是如何执行的呢?

实际上跑了两次分组聚合,如下:

postgres=# explain analyze select c1,c2,count(distinct c3),count(distinct c4) from tbl group by c1,c2;  
                                                                                   QUERY PLAN                                                                                     
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice3; segments: 48)  (cost=5647824.00..5707884.00 rows=1001000 width=32)  
   Rows out:  1002001 rows at destination with 9598 ms to end, start offset by 2.272 ms.  
   ->  Hash Join  (cost=5647824.00..5707884.00 rows=20855 width=32)  
         Hash Cond: NOT dqa_coplan_1.c1 IS DISTINCT FROM dqa_coplan_2.c1 AND NOT dqa_coplan_1.c2 IS DISTINCT FROM dqa_coplan_2.c2  
         Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.015 ms to first row, 1584 ms to end, start offset by 26 ms.  
         Executor memory:  816K bytes avg, 817K bytes max (seg11).  
         Work_mem used:  816K bytes avg, 817K bytes max (seg11). Workfile: (0 spilling, 0 reused)  
         ->  HashAggregate  (cost=2823912.00..2838927.00 rows=20855 width=16)  
               Group By: partial_aggregation.c1, partial_aggregation.c2  
               Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.004 ms to first row, 262 ms to end, start offset by 27 ms.  
               ->  HashAggregate  (cost=2473912.00..2623912.00 rows=208334 width=12)  
                     Group By: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c3  
                     Rows out:  Avg 1320761.3 rows x 48 workers.  Max 1323529 rows (seg9) with 0.001 ms to first row, 2778 ms to end, start offset by 27 ms.  
                     ->  Redistribute Motion 48:48  (slice1; segments: 48)  (cost=2048912.00..2248912.00 rows=208334 width=12)  
                           Hash Key: postgres.tbl.c1, postgres.tbl.c2  
                           Rows out:  Avg 2061921.2 rows x 48 workers at destination.  Max 2066345 rows (seg31) with 0.003 ms to end, start offset by 49 ms.  
                           ->  HashAggregate  (cost=2048912.00..2048912.00 rows=208334 width=12)  
                                 Group By: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c3  
                                 Rows out:  Avg 2061921.2 rows x 48 workers.  Max 2062196 rows (seg24) with 0.003 ms to first row, 2958 ms to end, start offset by 86 ms.  
                                 ->  Append-only Columnar Scan on tbl  (cost=0.00..1048912.00 rows=2083334 width=16)  
                                       Rows out:  0 rows (seg0) with 76 ms to end, start offset by 128 ms.  
         ->  Hash  (cost=2848937.00..2848937.00 rows=20855 width=16)  
               Rows in:  (No row requested) 0 rows (seg0) with 0 ms to end.  
               ->  HashAggregate  (cost=2823912.00..2838927.00 rows=20855 width=16)  
                     Group By: partial_aggregation.c1, partial_aggregation.c2  
                     Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.004 ms to first row, 227 ms to end, start offset by 27 ms.  
                     ->  HashAggregate  (cost=2473912.00..2623912.00 rows=208334 width=12)  
                           Group By: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c4  
                           Rows out:  Avg 1320773.6 rows x 48 workers.  Max 1323487 rows (seg9) with 0.001 ms to first row, 3916 ms to end, start offset by 27 ms.  
                           ->  Redistribute Motion 48:48  (slice2; segments: 48)  (cost=2048912.00..2248912.00 rows=208334 width=12)  
                                 Hash Key: postgres.tbl.c1, postgres.tbl.c2  
                                 Rows out:  Avg 2061913.9 rows x 48 workers at destination.  Max 2066340 rows (seg31) with 284 ms to end, start offset by 49 ms.  
                                 ->  HashAggregate  (cost=2048912.00..2048912.00 rows=208334 width=12)  
                                       Group By: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c4  
                                       Rows out:  Avg 2061913.9 rows x 48 workers.  Max 2062167 rows (seg20) with 0.005 ms to first row, 3343 ms to end, start offset by 50 ms.  
                                       ->  Append-only Columnar Scan on tbl  (cost=0.00..1048912.00 rows=2083334 width=16)  
                                             Rows out:  0 rows (seg0) with 75 ms to end, start offset by 131 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 490K bytes.  
   (slice1)    Executor memory: 1213K bytes avg x 48 workers, 1213K bytes max (seg0).  
   (slice2)    Executor memory: 1213K bytes avg x 48 workers, 1213K bytes max (seg0).  
   (slice3)    Executor memory: 497K bytes avg x 48 workers, 497K bytes max (seg0).  Work_mem: 817K bytes max.  
 Statement statistics:  
   Memory used: 128000K bytes  
 Settings:  enable_bitmapscan=off; enable_seqscan=off; optimizer=off  
 Optimizer status: legacy query optimizer  
 Total runtime: 9612.938 ms  
(47 rows)  

相当于以下SQL:

select t1.c1, t1.c2, t1.cn as c3, t2.cn as c4 from  
(select c1,c2,count(*) cn from (select c1,c2,c3 from tbl group by c1,c2,c3) t group by c1,c2) t1  
join  
(select c1,c2,count(*) cn from (select c1,c2,c4 from tbl group by c1,c2,c4) t group by c1,c2) t2  
on (NOT t1.c1 IS DISTINCT FROM t2.c1 AND NOT t1.c2 IS DISTINCT FROM t2.c2);  

执行计划:

postgres=# explain analyze select t1.c1, t1.c2, t1.cn as c3, t2.cn as c4 from  
(select c1,c2,count(*) cn from (select c1,c2,c3 from tbl group by c1,c2,c3) t group by c1,c2) t1  
join  
(select c1,c2,count(*) cn from (select c1,c2,c4 from tbl group by c1,c2,c4) t group by c1,c2) t2  
on (NOT t1.c1 IS DISTINCT FROM t2.c1 AND NOT t1.c2 IS DISTINCT FROM t2.c2);  
                                                                                             QUERY PLAN                                                                                               
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Gather Motion 48:1  (slice5; segments: 48)  (cost=0.00..21231.04 rows=316722656 width=24)  
   Rows out:  1002001 rows at destination with 12721 ms to end, start offset by 1253 ms.  
   ->  Hash Join  (cost=0.00..3782.79 rows=6598389 width=24)  
         Hash Cond: NOT postgres.tbl.c1 IS DISTINCT FROM postgres.tbl.c1 AND NOT postgres.tbl.c2 IS DISTINCT FROM postgres.tbl.c2  
         Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.042 ms to first row, 9546 ms to end, start offset by 1272 ms.  
         Executor memory:  816K bytes avg, 817K bytes max (seg11).  
         Work_mem used:  816K bytes avg, 817K bytes max (seg11). Workfile: (0 spilling, 0 reused)  
         ->  HashAggregate  (cost=0.00..1608.86 rows=11731 width=16)  
               Group By: postgres.tbl.c1, postgres.tbl.c2  
               Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.001 ms to first row, 929 ms to end, start offset by 1272 ms.  
               ->  Redistribute Motion 48:48  (slice2; segments: 48)  (cost=0.00..1605.90 rows=11731 width=16)  
                     Hash Key: postgres.tbl.c1, postgres.tbl.c2  
                     Rows out:  Avg 761778.0 rows x 48 workers at destination.  Max 763236 rows (seg1) with 0.004 ms to end, start offset by 1260 ms.  
                     ->  Result  (cost=0.00..1605.31 rows=11731 width=16)  
                           Rows out:  Avg 761778.0 rows x 48 workers.  Max 762979 rows (seg3) with 0.007 ms to first row, 39 ms to end, start offset by 1346 ms.  
                           ->  HashAggregate  (cost=0.00..1605.31 rows=11731 width=16)  
                                 Group By: postgres.tbl.c1, postgres.tbl.c2  
                                 Rows out:  Avg 761778.0 rows x 48 workers.  Max 762979 rows (seg3) with 0.004 ms to first row, 893 ms to end, start offset by 1346 ms.  
                                 ->  HashAggregate  (cost=0.00..1481.27 rows=499828 width=8)  
                                       Group By: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c3  
                                       Rows out:  Avg 1320761.3 rows x 48 workers.  Max 1322202 rows (seg3) with 0.003 ms to first row, 6861 ms to end, start offset by 1346 ms.  
                                       ->  Redistribute Motion 48:48  (slice1; segments: 48)  (cost=0.00..1297.74 rows=499828 width=12)  
                                             Hash Key: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c3  
                                             Rows out:  Avg 2061921.2 rows x 48 workers at destination.  Max 2064440 rows (seg9) with 1672 ms to end, start offset by 1319 ms.  
                                             ->  HashAggregate  (cost=0.00..1278.97 rows=499828 width=12)  
                                                   Group By: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c3  
                                                   Rows out:  Avg 2061921.2 rows x 48 workers.  Max 2062196 rows (seg24) with 3.151 ms to first row, 3654 ms to end, start offset by 1354 ms.  
                                                   ->  Table Scan on tbl  (cost=0.00..465.38 rows=2083334 width=12)  
                                                         Rows out:  0 rows (seg0) with 86 ms to end, start offset by 1464 ms.  
         ->  Hash  (cost=1608.86..1608.86 rows=11731 width=16)  
               Rows in:  (No row requested) 0 rows (seg0) with 0 ms to end.  
               ->  HashAggregate  (cost=0.00..1608.86 rows=11731 width=16)  
                     Group By: postgres.tbl.c1, postgres.tbl.c2  
                     Rows out:  Avg 20875.0 rows x 48 workers.  Max 20914 rows (seg11) with 0.003 ms to first row, 1698 ms to end, start offset by 1272 ms.  
                     ->  Redistribute Motion 48:48  (slice4; segments: 48)  (cost=0.00..1605.90 rows=11731 width=16)  
                           Hash Key: postgres.tbl.c1, postgres.tbl.c2  
                           Rows out:  Avg 761897.3 rows x 48 workers at destination.  Max 763444 rows (seg26) with 94 ms to end, start offset by 1316 ms.  
                           ->  Result  (cost=0.00..1605.31 rows=11731 width=16)  
                                 Rows out:  Avg 761897.3 rows x 48 workers.  Max 762689 rows (seg21) with 0.008 ms to first row, 27 ms to end, start offset by 1316 ms.  
                                 ->  HashAggregate  (cost=0.00..1605.31 rows=11731 width=16)  
                                       Group By: postgres.tbl.c1, postgres.tbl.c2  
                                       Rows out:  Avg 761897.3 rows x 48 workers.  Max 762689 rows (seg21) with 0.004 ms to first row, 1592 ms to end, start offset by 1316 ms.  
                                       ->  HashAggregate  (cost=0.00..1481.27 rows=499828 width=8)  
                                             Group By: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c4  
                                             Rows out:  Avg 1320773.6 rows x 48 workers.  Max 1322071 rows (seg20) with 0.004 ms to first row, 6853 ms to end, start offset by 1330 ms.  
                                             ->  Redistribute Motion 48:48  (slice3; segments: 48)  (cost=0.00..1297.74 rows=499828 width=12)  
                                                   Hash Key: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c4  
                                                   Rows out:  Avg 2061913.9 rows x 48 workers at destination.  Max 2064793 rows (seg20) with 1657 ms to end, start offset by 1330 ms.  
                                                   ->  HashAggregate  (cost=0.00..1278.97 rows=499828 width=12)  
                                                         Group By: postgres.tbl.c1, postgres.tbl.c2, postgres.tbl.c4  
                                                         Rows out:  Avg 2061913.9 rows x 48 workers.  Max 2062167 rows (seg20) with 0.005 ms to first row, 3001 ms to end, start offset by 1460 ms.  
                                                         ->  Table Scan on tbl  (cost=0.00..465.38 rows=2083334 width=12)  
                                                               Rows out:  0 rows (seg0) with 85 ms to end, start offset by 1479 ms.  
 Slice statistics:  
   (slice0)    Executor memory: 507K bytes.  
   (slice1)    Executor memory: 1253K bytes avg x 48 workers, 1253K bytes max (seg0).  
   (slice2)    Executor memory: 1387K bytes avg x 48 workers, 1387K bytes max (seg0).  
   (slice3)    Executor memory: 1253K bytes avg x 48 workers, 1253K bytes max (seg0).  
   (slice4)    Executor memory: 1387K bytes avg x 48 workers, 1387K bytes max (seg0).  
   (slice5)    Executor memory: 561K bytes avg x 48 workers, 561K bytes max (seg0).  Work_mem: 817K bytes max.  
 Statement statistics:  
   Memory used: 128000K bytes  
 Settings:  enable_bitmapscan=off; enable_seqscan=off; optimizer=on  
 Optimizer status: PQO version 1.602  
 Total runtime: 13975.507 ms  
(65 rows)  

在PostgreSQL的执行计划中,隐藏了两步分组聚合。

postgres=# explain verbose select c1,c2,count(distinct c3),count(distinct c4) from tbl group by c1,c2;  
                                    QUERY PLAN                                      
----------------------------------------------------------------------------------  
 GroupAggregate  (cost=1217753.56..1292678.56 rows=555000 width=24)  
   Output: c1, c2, count(DISTINCT c3), count(DISTINCT c4)  
   Group Key: tbl.c1, tbl.c2  
   ->  Sort  (cost=1217753.56..1231628.56 rows=5550000 width=16)  
         Output: c1, c2, c3, c4  
         Sort Key: tbl.c1, tbl.c2  
         ->  Seq Scan on public.tbl  (cost=0.00..596041.00 rows=5550000 width=16)  
               Output: c1, c2, c3, c4  
(8 rows)  

小结

数据库中有两种手段支持求distinct:

1、HashAgg,无需排序,数据量较大时需要较大work_mem

2、GroupAgg,需要排序

数据量越大,HashAgg效果越明显。

目前PostgreSQL需要改写SQL来对求distinct实现HashAgg。Greenplum直接支持两种。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
6月前
|
SQL Oracle 关系型数据库
实时计算 Flink版操作报错之往GREENPLUM 6 写数据,用postgresql-42.2.9.jar 报 ON CONFLICT (uuid) DO UPDATE SET 语法有问题。怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
SQL 关系型数据库 测试技术
沉浸式学习PostgreSQL|PolarDB 20: 学习成为数据库大师级别的优化技能
在上一个实验《沉浸式学习PostgreSQL|PolarDB 19: 体验最流行的开源企业ERP软件 odoo》 中, 学习了如何部署odoo和polardb|pg. 由于ODOO是非常复杂的ERP软件, 对于关系数据库的挑战也非常大, 所以通过odoo业务可以更快速提升同学的数据库优化能力, 发现业务对数据库的使用问题(如索引、事务对锁的运用逻辑问题), 数据库的代码缺陷, 参数或环境配置问题, 系统瓶颈等.
939 1
|
3月前
|
监控 关系型数据库 数据库
PostgreSQL的索引优化策略?
【8月更文挑战第26天】PostgreSQL的索引优化策略?
86 1
|
2月前
|
缓存 关系型数据库 数据库
如何优化 PostgreSQL 数据库性能?
如何优化 PostgreSQL 数据库性能?
77 2
|
3月前
|
监控 关系型数据库 数据库
如何优化PostgreSQL的性能?
【8月更文挑战第4天】如何优化PostgreSQL的性能?
223 7
|
5月前
|
SQL 关系型数据库 PostgreSQL
PostgreSQL和greenplum的copy命令可以添加字段吗?
【6月更文挑战第5天】PostgreSQL和greenplum的copy命令可以添加字段吗?
87 3
|
5月前
|
监控 关系型数据库 数据库
PostgreSQL和greenplum的copy命令如何使用?
【6月更文挑战第5天】PostgreSQL和greenplum的copy命令如何使用?
127 2
|
6月前
|
存储 JSON 关系型数据库
PostgreSQL Json应用场景介绍和Shared Detoast优化
PostgreSQL Json应用场景介绍和Shared Detoast优化
|
6月前
|
弹性计算 关系型数据库 数据库
开源PostgreSQL在倚天ECS上的最佳优化实践
本文基于倚天ECS硬件平台,以自顶向下的方式从上层应用、到基础软件,再到底层芯片硬件,通过应用与芯片的硬件特性的亲和性分析,实现PostgreSQL与倚天芯片软硬协同的深度优化,充分使能倚天硬件性能,帮助开源PostgreSQL应用实现性能提升。
|
6月前
|
监控 关系型数据库 Java
SpringBoot【集成 01】Druid+Dynamic+Greenplum(实际上用的是PostgreSQL的驱动)及 dbType not support 问题处理(附hikari相关配置)
SpringBoot【集成 01】Druid+Dynamic+Greenplum(实际上用的是PostgreSQL的驱动)及 dbType not support 问题处理(附hikari相关配置)
298 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版