mysql explain type连接类型示例

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 对于MySQL执行计划的获取,我们可以通过explain方式来查看,explain方式看似简单,实际上包含的内容很多,尤其是输出结果中的type类型列。

对于MySQL执行计划的获取,我们可以通过explain方式来查看,explain方式看似简单,实际上包含的内容很多,尤其是输出结果中的type类型列。理解这些不同的类型,对于我们SQL优化举足轻重,本文仅描述explian输出结果中的type列,同时给出其演示。

有关explian输出的全描述,可以参考:MySQL EXPLAIN SQL 输出信息描述

一、EXPLAIN 语句中type列的值

type:
    连接类型
    system          表只有一行
    const           表最多只有一行匹配,通用用于主键或者唯一索引比较时
    eq_ref          每次与之前的表合并行都只在该表读取一行,这是除了system,const之外最好的一种,
                    特点是使用=,而且索引的所有部分都参与join且索引是主键或非空唯一键的索引
    ref             如果每次只匹配少数行,那就是比较好的一种,使用=或<=>,可以是左覆盖索引或非主键或非唯一键
    fulltext        全文搜索
    ref_or_null     与ref类似,但包括NULL
    index_merge     表示出现了索引合并优化(包括交集,并集以及交集之间的并集),但不包括跨表和全文索引。
                    这个比较复杂,目前的理解是合并单表的范围索引扫描(如果成本估算比普通的range要更优的话)
    unique_subquery 在in子查询中,就是value in (select...)把形如“select unique_key_column”的子查询替换。
                    PS:所以不一定in子句中使用子查询就是低效的!
    index_subquery  同上,但把形如”select non_unique_key_column“的子查询替换
    range           常数值的范围
    index           a.当查询是索引覆盖的,即所有数据均可从索引树获取的时候(Extra中有Using Index);
                    b.以索引顺序从索引中查找数据行的全表扫描(无 Using Index);
                    c.如果Extra中Using IndexUsing Where同时出现的话,则是利用索引查找键值的意思;
                    d.如单独出现,则是用读索引来代替读行,但不用于查找
    all             全表扫描

二、连接类型部分示例

1、all
-- 环境描述
(root@localhost) [sakila]> show variables like 'version';
+---------------+--------+
| Variable_name | Value  |
+---------------+--------+
| version       | 5.6.26 |
+---------------+--------+

MySQL采取全表遍历的方式来返回数据行,等同于Oracle的full table scan
(root@localhost) [sakila]> explain select count(description) from film;
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+
|  1 | SIMPLE      | film  | ALL  | NULL          | NULL | NULL    | NULL | 1000 | NULL  |
+----+-------------+-------+------+---------------+------+---------+------+------+-------+

2、index
MySQL采取索引全扫描的方式来返回数据行,等同于Oracle的full index scan
(root@localhost) [sakila]> explain select title from film \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: film
         type: index
possible_keys: NULL
          key: idx_title
      key_len: 767
          ref: NULL
         rows: 1000
        Extra: Using index
1 row in set (0.00 sec)

3、  range
索引范围扫描,对索引的扫描开始于某一点,返回匹配值域的行,常见于between、<、>等的查询
等同于Oracle的index range scan
(root@localhost) [sakila]> explain select * from payment where customer_id>300 and customer_id<400\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: payment
         type: range
possible_keys: idx_fk_customer_id
          key: idx_fk_customer_id
      key_len: 2
          ref: NULL
         rows: 2637
        Extra: Using where
1 row in set (0.00 sec)

(root@localhost) [sakila]> explain select * from payment where customer_id in (200,300,400)\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: payment
         type: range
possible_keys: idx_fk_customer_id
          key: idx_fk_customer_id
      key_len: 2
          ref: NULL
         rows: 86
        Extra: Using index condition
1 row in set (0.00 sec)

4、ref
非唯一性索引扫描或者,返回匹配某个单独值的所有行。常见于使用非唯一索引即唯一索引的非唯一前缀进行的查找
(root@localhost) [sakila]> explain select * from payment where customer_id=305\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: payment
         type: ref
possible_keys: idx_fk_customer_id
          key: idx_fk_customer_id
      key_len: 2
          ref: const
         rows: 25
        Extra: 
1 row in set (0.00 sec)

idx_fk_customer_id为表payment上的外键索引,且存在多个不不唯一的值,如下查询
(root@localhost) [sakila]> select customer_id,count(*) from payment group by customer_id
    -> limit 2;
+-------------+----------+
| customer_id | count(*) |
+-------------+----------+
|           1 |       32 |
|           2 |       27 |
+-------------+----------+

-- 下面是非唯一前缀索引使用ref的示例
(root@localhost) [sakila]> create index idx_fisrt_last_name on customer(first_name,last_name);
Query OK, 599 rows affected (0.09 sec)
Records: 599  Duplicates: 0  Warnings: 0

(root@localhost) [sakila]> select first_name,count(*) from customer group by first_name 
    -> having count(*)>1 limit 2;
+------------+----------+
| first_name | count(*) |
+------------+----------+
| JAMIE      |        2 |
| JESSIE     |        2 |
+------------+----------+
2 rows in set (0.00 sec)

(root@localhost) [sakila]> explain select first_name from customer where first_name='JESSIE'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: customer
         type: ref
possible_keys: idx_fisrt_last_name
          key: idx_fisrt_last_name
      key_len: 137
          ref: const
         rows: 2
        Extra: Using where; Using index
1 row in set (0.00 sec)

(root@localhost) [sakila]> alter table customer drop index idx_fisrt_last_name;
Query OK, 599 rows affected (0.03 sec)
Records: 599  Duplicates: 0  Warnings: 0

--下面演示出现在join是ref的示例
(root@localhost) [sakila]> explain select b.*,a.* from payment a inner join
    -> customer b on a.customer_id=b.customer_id\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: b
         type: ALL
possible_keys: PRIMARY
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 599
        Extra: NULL
*************************** 2. row ***************************
           id: 1
  select_type: SIMPLE
        table: a
         type: ref
possible_keys: idx_fk_customer_id
          key: idx_fk_customer_id
      key_len: 2
          ref: sakila.b.customer_id
         rows: 13
        Extra: NULL
2 rows in set (0.01 sec)

5、eq_ref
类似于ref,其差别在于使用的索引为唯一索引,对于每个索引键值,表中只有一条记录与之匹配。
多见于主键扫描或者索引唯一扫描。
(root@localhost) [sakila]> explain select * from film a join film_text b 
    -> on a.film_id=b.film_id;
+----+-------------+-------+--------+---------------+---------+---------+------------------+------+-------------+
| id | select_type | table | type   | possible_keys | key     | key_len | ref              | rows | Extra       |
+----+-------------+-------+--------+---------------+---------+---------+------------------+------+-------------+
|  1 | SIMPLE      | b     | ALL    | PRIMARY       | NULL    | NULL    | NULL             | 1000 | NULL        |
|  1 | SIMPLE      | a     | eq_ref | PRIMARY       | PRIMARY | 2       | sakila.b.film_id |    1 | Using where |
+----+-------------+-------+--------+---------------+---------+---------+------------------+------+-------------+


(root@localhost) [sakila]> explain select title from film where film_id=5;
+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+
| id | select_type | table | type  | possible_keys | key     | key_len | ref   | rows | Extra |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+
|  1 | SIMPLE      | film  | const | PRIMARY       | PRIMARY | 2       | const |    1 | NULL  |
+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+

6、const、system:
当MySQL对查询某部分进行优化,这个匹配的行的其他列值可以转换为一个常量来处理。
如将主键或者唯一索引置于where列表中,MySQL就能将该查询转换为一个常量
(root@localhost) [sakila]> create table t1(id int,ename varchar(20) unique);
Query OK, 0 rows affected (0.05 sec)

(root@localhost) [sakila]> insert into t1 values(1,'robin'),(2,'jack'),(3,'henry');
Query OK, 3 rows affected (0.00 sec)
Records: 3  Duplicates: 0  Warnings: 0

(root@localhost) [sakila]> explain select * from (select * from t1 where ename='robin')x;
+----+-------------+------------+--------+---------------+-------+---------+-------+------+-------+
| id | select_type | table      | type   | possible_keys | key   | key_len | ref   | rows | Extra |
+----+-------------+------------+--------+---------------+-------+---------+-------+------+-------+
|  1 | PRIMARY     | <derived2> | system | NULL          | NULL  | NULL    | NULL  |    1 | NULL  |
|  2 | DERIVED     | t1         | const  | ename         | ename | 23      | const |    1 | NULL  |
+----+-------------+------------+--------+---------------+-------+---------+-------+------+-------+
2 rows in set (0.00 sec)

7、type=NULL
MySQL不用访问表或者索引就可以直接得到结果
(root@localhost) [sakila]> explain select sysdate();
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows | Extra          |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
|  1 | SIMPLE      | NULL  | NULL | NULL          | NULL | NULL    | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set (0.00 sec)
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
20天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
119 9
|
24天前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
89 6
|
2月前
|
关系型数据库 MySQL 网络安全
DBeaver连接MySQL提示Access denied for user ‘‘@‘ip‘ (using password: YES)
“Access denied for user ''@'ip' (using password: YES)”错误通常与MySQL用户权限配置或网络设置有关。通过检查并正确配置用户名和密码、用户权限、MySQL配置文件及防火墙设置,可以有效解决此问题。希望本文能帮助您成功连接MySQL数据库。
102 4
|
2月前
|
分布式计算 关系型数据库 MySQL
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型 图像处理 光通信 分布式计算 算法语言 信息技术 计算机应用
62 8
|
2月前
|
安全 关系型数据库 MySQL
【赵渝强老师】MySQL的连接方式
本文介绍了MySQL数据库服务器启动后的三种连接方式:本地连接、远程连接和安全连接。详细步骤包括使用root用户登录、修改密码、创建新用户、授权及配置SSL等。并附有视频讲解,帮助读者更好地理解和操作。
248 1
|
3月前
|
SQL Java 关系型数据库
java连接mysql查询数据(基础版,无框架)
【10月更文挑战第12天】该示例展示了如何使用Java通过JDBC连接MySQL数据库并查询数据。首先在项目中引入`mysql-connector-java`依赖,然后通过`JdbcUtil`类中的`main`方法实现数据库连接、执行SQL查询及结果处理,最后关闭相关资源。
256 6
|
3月前
|
SQL JavaScript 关系型数据库
node博客小项目:接口开发、连接mysql数据库
【10月更文挑战第14天】node博客小项目:接口开发、连接mysql数据库
|
3月前
|
Java 关系型数据库 MySQL
【编程基础知识】Eclipse连接MySQL 8.0时的JDK版本和驱动问题全解析
本文详细解析了在使用Eclipse连接MySQL 8.0时常见的JDK版本不兼容、驱动类错误和时区设置问题,并提供了清晰的解决方案。通过正确配置JDK版本、选择合适的驱动类和设置时区,确保Java应用能够顺利连接MySQL 8.0。
299 1
|
2月前
|
关系型数据库 MySQL Java
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型
39 0
|
15天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
39 3

推荐镜像

更多