一步一步写算法(之排序二叉树的保存和加载)

简介: 原文: 一步一步写算法(之排序二叉树的保存和加载) 【 声明:版权所有,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】     排序二叉树是我们开发中经常使用到的一种数据结构,它具有较好的插入、删除、查找特性。
原文: 一步一步写算法(之排序二叉树的保存和加载)

【 声明:版权所有,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】


    排序二叉树是我们开发中经常使用到的一种数据结构,它具有较好的插入、删除、查找特性。但是由于二叉树的指针较多,所以相比较其他的数据结构而言,二叉树来得比较麻烦些。但是也不是没有办法,下面介绍一下我个人常用的方法。
    我们知道,如果一个二叉树是一个满树的话,那么二叉树的节点应该是按照1、2、3、4依次排开的。但是现实情况是这样的,由于排序二叉树自身的特性,某个分支节点常常可能左半边有分支,右半边没有分支;或者是右半边有分支,左半边没有分支。那么在数据中节点的顺序很可能是不连贯的了。
    但是,对于某一个节点来说,它的左分支节点、右分支节点和父节点之间还是存在着某种联系的。比如说,如果父节点的顺序是n,那么它的左节点只能是n*2,右边节点只能是2*n+1。那么,我们能不能利用父节点和子节点之间的关系来进行数据的保存呢?答案当然是肯定的。

    首先,我们需要对数据结构重新定义一下,其中number记录序列号:

typedef struct _TREE_NODE
{
	int data;
	int number;
	struct _TREE_NODE* left_child;
	struct _TREE_NODE* right_child;
}TREE_NODE;
    那么原来添加数据的函数也要做出修改?
STATUS _insert_node_into_tree(TREE_NODE* pTreeNode, int data)
{
	TREE_NODE* pNode;

	while(1){
		if(data < pTreeNode->data){
			if(NULL == pTreeNode->left_child){
				pNode = create_tree_node(data);
				assert(NULL != pNode);
				pNode->number = pTreeNode->number << 1;
				pTreeNode->left_child = pNode;
				break;
			}else
				pTreeNode = pTreeNode->left_child;
		}else{
			if(NULL == pTreeNode->right_child){
				pNode = create_tree_node(data);
				assert(NULL != pNode);
				pNode->number = pTreeNode->number << 1 + 1;
				pTreeNode->right_child = pNode;
				break;
			}else
				pTreeNode = pTreeNode->right_child;
		}
	}

	return TRUE;
}

STATUS insert_node_into_tree(TREE_NODE** ppTreeNode, int data)
{
	if(NULL == ppTreeNode)
		return FALSE;
	
	if(NULL == *ppTreeNode){
		*ppTreeNode = (TREE_NODE*)create_tree_node(data);
		assert(NULL != *ppTreeNode);
		(*ppTreeNode)->number = 1;
		return TRUE;
	}
	
	return _insert_node_into_tree(*ppTreeNode, data);
}
    那么,此时保存的时候放在硬盘里面的数据应该有哪些呢?我们在遍历每一个节点的时候,只需要把对应的数据和序列号依次放到硬盘即可。

typedef struct _DATA
{
	int data;
	int number;
}DATA;
  

    保存的数据总要再次启用吧?怎么加载呢?很简单,四个步骤:
        1)根据记录的节点总数分配n*sizeof(TREE_NODE)空间;
        2)依次从硬盘中取出DATA数据,把它们复制给TREE_NODE,暂时left_side和right_side指针为空;
        3)对于对于每一个节点n,寻找它的父节点n>>1,填充left_side或者是right_side,并且根据(n%2)是否为1判断当前节点是左节点还是右节点;
        4)获取n=1的节点,那么这个节点就是我们需要寻找的根节点,至此数据就加载完毕。




目录
相关文章
|
1天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
33 5
|
4月前
|
算法
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
【算法】二分查找——在排序数组中查找元素的第一个和最后一个位置
|
1月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
105 8
|
1月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
124 7
|
1月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
60 5
|
1月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
47 0
|
2月前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
79 9
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
32 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
37 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树

热门文章

最新文章