OpenCV计算物体的重心坐标(2值图像)

简介: 效果图: 代码: // FindGravity.cpp : 定义控制台应用程序的入口点。//#include "stdafx.h"#include #include #include "cv.

效果图:


代码:


// FindGravity.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include <iostream>
#include <string>
#include "cv.h" 
#include "highgui.h" 




#include <opencv2/core/core.hpp>  
#include <opencv2/highgui/highgui.hpp>


#pragma comment(lib,"opencv_core2410d.lib")                
#pragma comment(lib,"opencv_highgui2410d.lib")                
#pragma comment(lib,"opencv_imgproc2410d.lib")   

using namespace std;
using namespace cv;


void FindGravity()
{
	
}
/** 计算二值图像的重心
* @param[in] src  输入的待处理图像
* @param[out] center 重心坐标
* @retval 0  操作成功
* @retval -1 操作失败
* @note 输入图像是二值化图像
* @note xc=M10/M00, yc=M01/M00, 其中 Mx_order,y_order=SUMx,y(I(x,y)*x^x_order*y^y_order)
 */
 static int aoiGravityCenter(IplImage *src, CvPoint ¢er)
 {
  //if(!src)
  // return GRAVITYCENTER__SRC_IS_NULL;
  double m00, m10, m01;
  CvMoments moment;
  cvMoments( src, &moment, 1);
  m00 = cvGetSpatialMoment( &moment, 0, 0 );
  if( m00 == 0) 
   return 1;
  m10 = cvGetSpatialMoment( &moment, 1, 0 );
  m01 = cvGetSpatialMoment( &moment, 0, 1 );
  center.x = (int) (m10/m00);
  center.y = (int) (m01/m00);
  return 0;
 } 

 IplImage* binary_image(IplImage* src)
 {
	 

		// cvThreshold( src, src, 100, 255, CV_THRESH_BINARY );//100 is the thredhold 
		 IplImage* one_channel = cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,0);
		
		 for(int y = 0;y < src->height;y++)
		 {
			 char *ptr= src->imageData + y * src->widthStep;
			 char *p_one_channel = one_channel->imageData + y * one_channel->widthStep;
			 for(int x = 0;x < src->width;x++)
			 {
				 int temp = ptr[3*x];
				 if (temp != 0)//不是黑色也就是说不是背景
				 {
					 p_one_channel[x] = 255;//设置为白色
				 }
				 else
				 {
					 p_one_channel[x] = 0;

				 }
				 //ptr[3*x]=
				 //ptr[3*x+1]=
				 //ptr[3*x+2]=; 
			 }
		 }
		 return one_channel;


 }

int _tmain(int argc, _TCHAR* argv[])
{
	string str_name = "seg_right.bmp";

	IplImage* src; 
	IplImage* draw = cvLoadImage(str_name.c_str(),1);//绘制重心的图像
	
	if ((src = cvLoadImage(str_name.c_str(),1))!=0)
	{
		//src = binary_image(src);
		cvNamedWindow( "binary image", 1 ); 
		cvShowImage( "binary image", binary_image(src) );
	}
	CvPoint xy;
	aoiGravityCenter(binary_image(src),xy);
	cout<<xy.x<<endl;
	cout<<xy.y<<endl;


	cvCircle(draw,cvPoint(xy.x,xy.y),3,CV_RGB(0,0,255),5);

	cvNamedWindow( "重心", 1 ); 
	cvShowImage( "重心", draw ); 

	cvWaitKey(0);
	return 0;
}




我调试好的工程:点击打开链接

http://download.csdn.net/detail/wangyaninglm/9389338 

相关文章
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
335 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
2月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
49 4
|
2月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
3月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
WK
|
3月前
|
编解码 计算机视觉 Python
如何在OpenCV中进行图像转换
在OpenCV中,图像转换涉及颜色空间变换、大小调整及类型转换等操作。常用函数如`cvtColor`可实现BGR到RGB、灰度图或HSV的转换;`resize`则用于调整图像分辨率。此外,通过`astype`或`convertScaleAbs`可改变图像数据类型。对于复杂的几何变换,如仿射或透视变换,则可利用`warpAffine`和`warpPerspective`函数实现。这些技术为图像处理提供了强大的工具。
WK
108 1
|
5月前
|
算法 计算机视觉
【Qt&OpenCV 图像的感兴趣区域ROI】
【Qt&OpenCV 图像的感兴趣区域ROI】
168 1
|
5月前
|
运维 算法 计算机视觉
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
79 1
|
5月前
|
存储 编解码 算法
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
90 0
|
4月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
|
5月前
|
计算机视觉
OpenCV中图像算术操作与逻辑操作
OpenCV中图像算术操作与逻辑操作
68 1