HTAP数据库 PostgreSQL 场景与性能测试之 43 - (OLTP+OLAP) unlogged table 含索引多表批量写入

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - unlogged table 含索引多表批量写入 (OLTP+OLAP)

1、背景

含索引,多表(1024个表),每次写入多条记录。这是非常典型的测试TP或AP场景,数据实时灌入场景的能力。

unlogged table是不记录日志的表,与临时表的区别是全局可见,常用于不需要持久化的数据。

2、设计

多unlogged table表(1024个表),含索引,单事务多条写入(一次写入1000条)。高并发。

3、准备测试表

create unlogged table t_sensor(        
  id int8,        
  c1 int8 default 0,        
  c2 int8 default 0,        
  c3 int8 default 0,        
  c4 float8 default 0,        
  c5 text default 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa',        
  ts timestamp default clock_timestamp()        
) with (autovacuum_enabled=off, toast.autovacuum_enabled=off);        
        
create index idx_t_sensor_ts on t_sensor using btree (ts) tablespace tbs1;        
do language plpgsql $$        
declare        
begin        
  for i in 1..1024 loop        
    execute format('create unlogged table t_sensor%s (like t_sensor including all) inherits (t_sensor) with (autovacuum_enabled=off, toast.autovacuum_enabled=off) '||case when mod(i,2)=0 then 'tablespace tbs1' else '' end, i);        
  end loop;        
end;        
$$;        

4、准备测试函数(可选)

create or replace function ins_sensor(int, int) returns void as $$        
declare        
begin        
  execute format('insert into t_sensor%s (id) select generate_series(1,%s)', $1, $2);        
  -- 为了拼接表名,使用了动态SQL,硬解析耗时。        
  -- 导致测试结果有出入,至少不会比单表无索引写入性能差。        
  -- 批量写入的话,硬解析的问题可以被掩盖。        
end;        
$$ language plpgsql strict;        

5、准备测试数据

6、准备测试脚本

vi test.sql        
        
\set sid random(1,1024)        
select ins_sensor(:sid, 1000);        

压测

CONNECTS=56        
TIMES=300        
export PGHOST=$PGDATA        
export PGPORT=1999        
export PGUSER=postgres        
export PGPASSWORD=postgres        
export PGDATABASE=postgres        
        
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES        

7、测试

transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 300 s
number of transactions actually processed: 2200910
latency average = 7.632 ms
latency stddev = 22.637 ms
tps = 7334.246977 (including connections establishing)
tps = 7335.018041 (excluding connections establishing)
script statistics:
 - statement latencies in milliseconds:
         0.002  \set sid random(1,1024)  
         7.633  select ins_sensor(:sid, 1000);

TPS: 7335 ( = 733.5万 行/s )

多unlogged table表(1024个表),含索引,单事务多条写入(一次写入1000条)。高并发。

主要瓶颈: 磁盘IO吞吐.

平均响应时间: 7.632 毫秒

多unlogged table表(1024个表),含索引,单事务多条写入(一次写入1000条)。高并发。

主要瓶颈: 磁盘IO吞吐.

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
6月前
|
存储 运维 搜索推荐
实时数仓Hologres发展问题之Hologres在无人车送货场景中的应用如何解决
实时数仓Hologres发展问题之Hologres在无人车送货场景中的应用如何解决
66 2
|
26天前
|
存储 SQL 运维
Hologres OLAP场景核心能力介绍-2024实时数仓Hologres线上公开课02
本次分享由Hologres产品经理赵红梅(梅酱)介绍Hologres在OLAP场景中的核心能力。内容涵盖OLAP场景的痛点、Hologres的核心优势及其解决方法,包括实时数仓分析、湖仓一体加速、丰富的索引和查询性能优化等。此外,还介绍了Hologres在兼容PG生态、支持多种BI工具以及高级企业级功能如计算组隔离和serverless computing等方面的优势。最后通过小红书和乐元素两个典型客户案例,展示了Hologres在实际应用中的显著效益,如运维成本降低、查询性能提升及成本节省等。
|
25天前
|
SQL 监控 测试技术
一次压测引发的数据库CPU飙升...
一次压测过程中,当数据库的qps和tps都正常时,如果cpu利用率异常的高,应该如何排查?希望通过这篇文章,给你一些启发。
|
5月前
|
关系型数据库 MySQL 测试技术
《性能测试》读书笔记_数据库优化
《性能测试》读书笔记_数据库优化
43 7
|
6月前
|
存储 分布式计算 数据挖掘
实时数仓 Hologres 问题之适用于业务场景的实时数仓如何搭建
实时数仓 Hologres 问题之适用于业务场景的实时数仓如何搭建
|
6月前
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
1800 2
|
7月前
|
存储 数据挖掘 OLAP
阿里云 EMR Serverless StarRocks OLAP 数据分析场景解析
阿里云 E-MapReduce Serverless StarRocks 版是阿里云提供的 Serverless StarRocks 全托管服务,提供高性能、全场景、极速统一的数据分析体验,具备开箱即用、弹性扩展、监控管理、慢 SQL 诊断分析等全生命周期能力。内核 100% 兼容 StarRocks,性能比传统 OLAP 引擎提升 3-5 倍,助力企业高效构建大数据应用。本篇文章对阿里云EMR Serverless StarRocks OLAP 数据分析场景进行解析、存算分离架构升级以及 Trino 兼容,无缝替换介绍。
19259 12
|
8月前
|
存储 SQL BI
深入解析实时数仓Doris:介绍、架构剖析、应用场景与数据划分细节
深入解析实时数仓Doris:介绍、架构剖析、应用场景与数据划分细节
|
7月前
|
运维 数据挖掘 Serverless
深度解析阿里云EMR Serverless StarRocks在OLAP数据分析中的应用场景
阿里云EMR Serverless StarRocks作为一款高性能、全场景覆盖、全托管免运维的OLAP分析引擎,在企业数据分析领域展现出了强大的竞争力和广泛的应用前景。通过其卓越的技术特点、丰富的应用场景以及完善的生态体系支持,EMR Serverless StarRocks正逐步成为企业数字化转型和智能化升级的重要推手。未来随着技术的不断进步和应用场景的不断拓展我们有理由相信EMR Serverless StarRocks将在更多领域发挥重要作用为企业创造更大的价值。
|
8月前
|
关系型数据库 MySQL 测试技术
《阿里云产品四月刊》—瑶池数据库微课堂|RDS MySQL 经济版 vs 自建 MySQL 性能压测与性价比分析
阿里云瑶池数据库云原生化和一体化产品能力升级,多款产品更新迭代

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版