ZooKeeper和Diamond有什么不同

本文涉及的产品
Serverless 应用引擎 SAE,800核*时 1600GiB*时
云原生网关 MSE Higress,422元/月
性能测试 PTS,5000VUM额度
简介: 本文主要是讨论下两个类似产品:ZooKeeper和Diamond在配置管理这个应用场景上的异同点。 Diamond,顾名思义,寄寓了开发人员对产品稳定性的厚望,希望它像钻石一样,提供稳定的配置访问。Diamond是淘宝网Java中间件团队的核心产品之一,服务于集团线上很多核心应用。目前已经开源,开

本文主要是讨论下两个类似产品:ZooKeeper和Diamond在配置管理这个应用场景上的异同点。
Diamond,顾名思义,寄寓了开发人员对产品稳定性的厚望,希望它像钻石一样,提供稳定的配置访问。Diamond是淘宝网Java中间件团队的核心产品之一,服务于集团线上很多核心应用。目前已经开源,开源地址在:http://code.taobao.org/p/diamond/wiki/index/。

数据持久性

Diamond主要针对的是持久数据,这些数据有个共同的特点是:集群中一批机器都会使用,但是数据的更新频率不大,且希望diamond能够永久存储。
ZooKeeper即可以存储持久数据,也可以存储非持久数据。持久数据和diamond中的持久数据都类似,所谓的非持久数据是指这些数据的生命周期和数据创建者的会话生命周期绑定,一旦会话结束,那么这些非持久数据也会被清除。

推拉模型

本质上,两个产品都是“拉”模式的,即都是通过客户端自己去服务器获取最新数据。具体实现上,两个产品分别如下:
在Diamond中,客户端每隔15s轮询服务器,比对数据是否更新,从而获取最新数据。
在ZooKeeper中,则是通过客户端对相应的数据path注册Watcher,当数据有更新的时候,服务器会有事件通知,注意,这个通知仅仅是告诉客户端对应的数据有更新了,具体数据内容需要客户端根据自己的情况来决定是否需要获取最新数据。
因此在实时性方面,ZooKeeper比Diamond高一些。

服务器数据存储

在数据存储上,ZooKeeper和Diamond差别比较大。
首先来看下Diamond的数据存储。Diamond的数据存储以mysql数据库为中心,所有在mysql中的数据都是最新的,客户端的所有写请求,都会首先写入数据库,同时会dump数据到Server的本地文件中,所有读请求都是直接走这个静态文件。
在ZooKeeper中,所有运行时数据都是存储在内存中,客户端的所有读写操作都是针对这份内存数据来进行的。同时,内存中的数据,ZK会以快照的形式dump到指定文件中去,配合事务日志,帮助服务器在下次重启的时候,能够加载正确的数据到内存中去。

数据模型

Diamond的数据都是以行组织的,这也更便于它使用mysql来管理数据。Diamond的基本数据结构包含dataid,group和content,根据group,可以将一组相关的数据组合起来。
ZooKeeper中,使用树形结构来组织数据,每个节点类型于一个文件系统的路径,一个节点下面也可以创建多个子节点来规则一些相关的数据。

容灾

在容灾方面,diamond做得相当的完备:
1. 所有客户端的读请求,都是直接读取服务器端的本地静态文件,因此,即使数据库挂了,都不会影响diamond的读服务。而读服务在所有使用diamond的应用场景中,占到了绝大部分。
2. Diamond客户端还保存了数据的快照,客户端每次从服务器成功获取数据后,都会把这份数据保存到本地文件系统中,称为快照文件。这个快照文件是为了防止在服务器无法获取数据的时候,能够在这个快照中获取数据。
3. 客户端还会有一个容灾目录,变个容灾目录是在服务器完全不可用的时候,运维人员可以手动在这个容灾目录中创建相关目录结构的数据,diamond就就会优先从这个目录中获取数据。
4. 说到这里,我们就可以给diamond的数据获取优先级作一个总结:
首先都会从容灾目录中获取数据——无法从容灾目录获取数据的话,就通过网络到服务器请求数据——如果无法从服务器获取数据,那么就从本地的snapshot中获取数据。
接下来看看ZooKeepe的容灾,做得很少,只有以下一点:
1. ZooKeeper实现了paxos算法,有效的解决了分布式单点问题。以一个3台机器构成的集群为例,任意一台ZK挂掉,都不会影响集群的数据一致性。
总结:在容灾方面,diamond有很大的优势,也符合了diamond的稳定性要求。

数据大小

Diamond对单个数据的大小,没有严格的限制,通常2M左右的数据大小都是没有问题的。而在ZooKeeper中,由于全量数据都是存储在内存中,并且需求进行集群机器间的数据两步,所以对单个数据的大小有严格的限制,默认单个数据节点的最大数据大小是1M。

数据追加与聚合

Diamond支持对数据的追加与聚合功能,即对同一个dataid的写入操作,可以设置为追加。而ZooKeeper目前不支持,只有覆盖写。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
4月前
|
存储 容灾 算法
深入理解Zookeeper系列-1.初识Zoookeeper
深入理解Zookeeper系列-1.初识Zoookeeper
80 0
|
3月前
|
存储 分布式计算 算法
ZooKeeper
【6月更文挑战第21天】ZooKeeper
115 39
|
3月前
|
存储 Java 数据库
对于Zookeeper的一些理解
该文档介绍了如何使用ZooKeeper实现统一配置、命名服务和分布式锁以及集群管理。首先,为了解决多个系统重复配置的问题,提出了抽取公共配置到`common.yml`并存储在ZooKeeper中的方法,系统通过监听ZNode变化实时更新配置。接着,详细说明了配置管理的实现步骤,包括在服务器端将配置同步到ZooKeeper,以及客户端监听配置变更。此外,还解释了命名服务如何根据名称获取服务地址,并以域名访问为例进行了说明。最后,讨论了ZooKeeper实现的两种分布式锁策略,并阐述了其在集群管理中的应用,如检测节点状态变化和选举Master节点。
|
4月前
|
存储 分布式计算 资源调度
ZooKeeper详解
ZooKeeper是大数据组件中的协调器,确保高可用性和一致性。它用于监控主备节点切换(如Hadoop YARN的ResourceManager,HBase的RegionServer,Spark的Master)并实现数据同步。设计基于文件系统和通知机制,通过Znodes的状态变化(创建、删除、更新、子节点变化)进行协调。ZooKeeper使用观察者模式,当Znode变化时,通知客户端。其数据结构为树形,提供CLI工具如`zkCli.sh`进行交互。ZooKeeper有三个默认端口:2181(客户端连接),2888(服务器间同步),3888(选举)。选举采用半数机制,确保集群稳定性。
48 1
ZooKeeper详解
|
分布式计算 负载均衡 Hadoop
zookeeper介绍与配置
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源 的实现,是Hadoop和Hbase的重要组件。 它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式 同步、组服务等。 ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。 ———————————————— 版权声明:本文为CSDN博主「小bug大问题」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/2302
340 0
|
存储 域名解析 负载均衡
Zookeeper—应用
前言 在前面的几篇文章中,我们讲解了ZooKeeper的组成,基本功能,集群选举,ZAB协议和数据一致性。所有的设计都因应用场景而生,不结合场景的方案都是耍流氓。在今天的文章中,我们将要去了解ZK的应用,加深对ZK的认识。
102 0
|
缓存 Java API
Zookeeper系列(五)——使用Curator访问Zookeeper详解
Zookeeper系列(五)——使用Curator访问Zookeeper详解
860 0
Zookeeper系列(五)——使用Curator访问Zookeeper详解
|
存储 Linux
Zookeeper系列(六)——Zookeeper集群搭建和配置说明
Zookeeper系列(六)——Zookeeper集群搭建和配置说明
274 0
Zookeeper系列(六)——Zookeeper集群搭建和配置说明
|
存储 分布式计算 数据管理
|
SQL 存储 关系型数据库