HTAP数据库 PostgreSQL 场景与性能测试之 32 - (OLTP) 高吞吐数据进出(堆存、行扫、无需索引) - 阅后即焚(JSON + 函数流式计算)

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 秒杀 - 高并发单点更新 (OLTP)

1、背景

高吞吐的数据写入,消费,通常是MQ的强项和功能点,但是MQ没有数据存储的能力,也没有计算能力。

而PostgreSQL具备了存储、计算能力,同时PG还提供了高吞吐,可靠性。

在需要高吞吐计算的环境,PG是非常不错的选择。

如果业务上需要先进先出的模式,可以加一个时间索引,即可达到这样的效率,写入和消费都在300万行/s以上:

pic

详见:

《HTAP数据库 PostgreSQL 场景与性能测试之 27 - (OLTP) 物联网 - FEED日志, 流式处理 与 阅后即焚 (CTE)》

如果业务上不要求强烈的先进先出,并且处理吞吐足够强悍的话,实际上PG可以不需要索引,因为是堆表,没有索引,写和消费的吞吐可以做到更大。

上文测试的是不需要索引的裸写入和消费吞吐能力(消费、不计算)。

《HTAP数据库 PostgreSQL 场景与性能测试之 31 - (OLTP) 高吞吐数据进出(堆存、行扫、无需索引) - 阅后即焚(读写大吞吐并测)》

本文压测大吞吐下,结合 函数计算和JSON的能力。

2、设计

1、堆表、多表、大吞吐写入

2、堆表、多表、大吞吐消费

同时压测写入和消费。

3、准备测试表

1、使用jsonb作为内容字段

create table t_sensor (sid int, info jsonb, crt_time timestamp) ;  

使用2048个分表。

do language plpgsql $$  
declare  
begin  
  for i in 0..2047 loop  
    execute 'create table t_sensor'||i||'(like t_sensor including all) inherits(t_sensor) '||case when mod(i,2)=0 then ' ' else ' tablespace tbs1' end;  
  end loop;  
end;  
$$;  

4、准备测试函数(可选)

1、批量生成传感器测试数据的函数

CREATE OR REPLACE FUNCTION public.ins_batch(integer,integer)  
 RETURNS void  
 LANGUAGE plpgsql  
 STRICT  
AS $function$  
declare  
  suffix int := mod($1, 2048);  
begin  
  execute 'insert into t_sensor'||suffix||' select '||$1||', ''{"k":"abc", "v":'||10000*random()||'}'', now() from generate_series(1,'||$2||')';  
end;  
$function$;  

2、批量消费传感器数据的函数,按时间,从最早开始消费。

处理逻辑也可以放到里面,例如预警逻辑(采用PostgreSQL异步消息、CTE语法)。

《PostgreSQL 异步消息实践 - Feed系统实时监测与响应(如 电商主动服务) - 分钟级到毫秒级的跨域》

《PostgreSQL 内存表》

CREATE OR REPLACE FUNCTION public.consume_batch(integer,integer)  
 RETURNS void  
 LANGUAGE plpgsql  
 STRICT  
AS $function$  
declare  
  suffix int := mod($1, 2048);  
begin  
  -- 带流式处理业务逻辑的例句(采用CTE语法):  
  -- v > 9999时,往通道channel_1发送异步消息  
  execute format('with t1 as (delete from t_sensor%s where ctid = any(array(select ctid from t_sensor%s limit %s)) returning *)  
                       select pg_notify(''channel_1'', ''reason:xxx::::''||row_to_json(t1)) from t1 where (t1.info->>''v'')::float8 > 9999',  
		 suffix, suffix, $2);  
  --  
  -- 如果有多个判断基准,可以先存入TMP TABLE,再到TMP TABLE处理。  
  -- 使用普通的TMP table或者使用内存TMP TABLE。  
  -- [《PostgreSQL 内存表》](../201608/20160818_01.md)  
  
  -- 本例仅测试不带处理逻辑,只消费的情况,关注消费速度。  
  -- execute format('delete from t_sensor%s where ctid = any(array(select ctid from t_sensor%s limit %s))', suffix, suffix, $2);  
end;  
$function$;  

5、准备测试数据

6、准备测试脚本

同时压测写入和消费。

1、高吞吐写入测试,100万个传感器,每批1000条。

vi test.sql  
  
\set sid random(1,1000000)  
select ins_batch(:sid, 1000);  

压测

CONNECTS=28  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

2、高吞吐消费测试,100万个传感器,每批1000条。

vi test.sql  
  
\set sid random(1,1000000)  
select consume_batch(:sid, 1000);  

压测

CONNECTS=28  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test1.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

7、测试

1、高吞吐写入测试,100万个传感器,每批1000条。

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 28  
number of threads: 28  
duration: 300 s  
number of transactions actually processed: 540118  
latency average = 15.552 ms  
latency stddev = 6.859 ms  
tps = 1800.096277 (including connections establishing)  
tps = 1800.211896 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,1000000)  
        15.550  select ins_batch(:sid, 1000);  

2、高吞吐消费测试,100万个传感器,每批1000条。

transaction type: ./test1.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 28  
number of threads: 28  
duration: 300 s  
number of transactions actually processed: 437481  
latency average = 19.200 ms  
latency stddev = 8.386 ms  
tps = 1458.154052 (including connections establishing)  
tps = 1458.224625 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set sid random(1,1000000)  
        19.201  select consume_batch(:sid, 1000);  

3、压测过程中,收到一些函数式处理的异步消息:

LISTEN  
Asynchronous notification "channel_1" with payload "reason:xxx::::{"sid":462454,"info":{"k": "abc", "v": 9999.96403697878},"crt_time":"2017-11-16T19:36:56.164613"}" received from server process with PID 31075.  
postgres=# listen channel_1;  
LISTEN  
Asynchronous notification "channel_1" with payload "reason:xxx::::{"sid":462454,"info":{"k": "abc", "v": 9999.96403697878},"crt_time":"2017-11-16T19:36:56.164613"}" received from server process with PID 31083.  
postgres=# listen channel_1;  
LISTEN  
postgres=# listen channel_1;  
LISTEN  
Asynchronous notification "channel_1" with payload "reason:xxx::::{"sid":252209,"info":{"k": "abc", "v": 9999.39551576972},"crt_time":"2017-11-16T19:36:53.424862"}" received from server process with PID 31081.  

一、 TPS

同时压测写入和消费,使用JSONB作为内容输入,消费时加上处理函数,吞吐如下:

1、数据写入速度: 180万 行/s。
2、数据消费速度: 145.8万 行/s。

二、 平均响应时间

同时压测写入和消费,使用JSONB作为内容输入,消费时加上处理函数,吞吐如下:

1、数据写入速度: 15.5 毫秒。
2、数据消费速度: 19 毫秒。

加入函数式计算后,消费速度会有所下降,在权重上,可以分配多一些资源给消费。不过即便如此,消费速度也有145.9万行每秒。

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
3月前
|
关系型数据库 Serverless 定位技术
PostgreSQL GIS函数判断两条线有交点的函数是什么?
PostgreSQL GIS函数判断两条线有交点的函数是什么?
262 60
|
2月前
|
SQL 数据库 数据库管理
数据库SQL函数应用技巧与方法
在数据库管理中,SQL函数是处理和分析数据的强大工具
|
4月前
|
SQL 自然语言处理 关系型数据库
在 PostgreSQL 中使用 `REPLACE` 函数
【8月更文挑战第8天】
926 9
在 PostgreSQL 中使用 `REPLACE` 函数
|
3月前
|
SQL 关系型数据库 C语言
PostgreSQL SQL扩展 ---- C语言函数(三)
可以用C(或者与C兼容,比如C++)语言编写用户自定义函数(User-defined functions)。这些函数被编译到动态可加载目标文件(也称为共享库)中并被守护进程加载到服务中。“C语言函数”与“内部函数”的区别就在于动态加载这个特性,二者的实际编码约定本质上是相同的(因此,标准的内部函数库为用户自定义C语言函数提供了丰富的示例代码)
|
4月前
【Azure Durable Function】PowerShell Activity 函数遇见 Newtonsoft.Json.JsonReaderException: The reader's MaxDepth of 64 has been exceeded.
【Azure Durable Function】PowerShell Activity 函数遇见 Newtonsoft.Json.JsonReaderException: The reader's MaxDepth of 64 has been exceeded.
|
4月前
|
关系型数据库 OLAP 分布式数据库
揭秘Polardb与OceanBase:从OLTP到OLAP,你的业务选对数据库了吗?热点技术对比,激发你的选择好奇心!
【8月更文挑战第22天】在数据库领域,阿里巴巴的Polardb与OceanBase各具特色。Polardb采用共享存储架构,分离计算与存储,适配高并发OLTP场景,如电商交易;OceanBase利用灵活的分布式架构,优化数据分布与处理,擅长OLAP分析及大规模数据管理。选择时需考量业务特性——Polardb适合事务密集型应用,而OceanBase则为数据分析提供强大支持。
1099 2
|
4月前
|
关系型数据库 PostgreSQL
PostgreSQL的null值函数
【8月更文挑战第20天】PostgreSQL的null值函数
95 3
|
4月前
|
SQL 数据处理 数据库
|
4月前
|
SQL 关系型数据库 MySQL
SQL Server、MySQL、PostgreSQL:主流数据库SQL语法异同比较——深入探讨数据类型、分页查询、表创建与数据插入、函数和索引等关键语法差异,为跨数据库开发提供实用指导
【8月更文挑战第31天】SQL Server、MySQL和PostgreSQL是当今最流行的关系型数据库管理系统,均使用SQL作为查询语言,但在语法和功能实现上存在差异。本文将比较它们在数据类型、分页查询、创建和插入数据以及函数和索引等方面的异同,帮助开发者更好地理解和使用这些数据库。尽管它们共用SQL语言,但每个系统都有独特的语法规则,了解这些差异有助于提升开发效率和项目成功率。
415 0
|
5月前
|
存储 JSON Cloud Native
云原生数据仓库使用问题之怎么在ADB中添加JSON索引
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版