机器学习-线性回归-多维度特征变量

简介: 1. 假设函数之前的几篇文章里面,我们都只是介绍了单维特征变量的线性回归模型,比如预测房价的时候,我们只用了房子的面积这个维度。接下来我们会去研究多个维度的线性回归模型还是从预测房价这个例子入手,假设我们现在不只是单纯的考虑房子的面积,还考虑了...

1. 假设函数

之前的几篇文章里面,我们都只是介绍了单维特征变量的线性回归模型,比如预测房价的时候,我们只用了房子的面积这个维度。

接下来我们会去研究多个维度的线性回归模型

还是从预测房价这个例子入手,假设我们现在不只是单纯的考虑房子的面积,还考虑了卧室的数量、楼层、房子年限等三个维数

得到了一个新的训练集

由于特征向量x的维度是多维,因此我们的表示发生了一些变化,如下图

因此,多个维度特征变量的线性回归的假设函数可定义为

还是假设X0 = 1

此时,函数h有n+1个参数θ0 ~ θn,同时特征向量x有n维,x1 ~ xn,特殊的是x0永远等于1

不难发现函数h是特征向量x(x0,x1 ... xn) 和 参数θ的转置矩阵的乘积,证明如下

因此,函数h可以简化为如下式子

2. 代价函数

同理,扩展到多维特征变量之后,代价函数J,如下所示

我们的目的也是通过多轮的迭代,找到最佳的参数θ0 ~ θn,使得函数J(θ0,θ1,...θn)的值最小

目录
相关文章
|
2月前
|
机器学习/深度学习 传感器 算法
【机器学习】多元线性回归基本概念
【1月更文挑战第23天】【机器学习】多元线性回归基本概念
|
2月前
|
机器学习/深度学习 测试技术
机器学习第6天:线性回归模型正则化
机器学习第6天:线性回归模型正则化
29 0
|
3月前
|
机器学习/深度学习 Python
【Python机器学习】全连接层与非线性回归、防止过拟合方法的讲解及实战( 附源码)
【Python机器学习】全连接层与非线性回归、防止过拟合方法的讲解及实战( 附源码)
43 0
|
3月前
|
机器学习/深度学习 算法 TensorFlow
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
【Python机器学习】梯度下降法的讲解和求解方程、线性回归实战(Tensorflow、MindSpore平台 附源码)
43 0
|
9天前
|
机器学习/深度学习 人工智能 异构计算
人工智能平台PAI问题之Tag类型特征等长如何解决
人工智能平台PAI是指阿里云提供的机器学习平台服务,支持建模、训练和部署机器学习模型;本合集将介绍机器学习PAI的功能和操作流程,以及在使用过程中遇到的问题和解决方案。
33 0
|
12天前
|
机器学习/深度学习 人工智能 算法
利用Python实现简单的机器学习算法——线性回归
本文介绍了如何使用Python语言和相关库,通过实现线性回归算法来进行简单的机器学习模型训练和预测。通过详细的代码示例和解释,帮助读者了解机器学习中的基础概念和实践操作。
|
2月前
|
机器学习/深度学习 人工智能
【人工智能】<吴恩达-机器学习>多变量线性回归&学习率&特征值
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>多变量线性回归&学习率&特征值
|
2月前
|
机器学习/深度学习 人工智能
【人工智能】<吴恩达-机器学习>单变量的线性回归&认识梯度下降
【1月更文挑战第26天】【人工智能】<吴恩达-机器学习>单变量的线性回归&认识梯度下降
|
2月前
|
机器学习/深度学习 算法 Python
机器学习 - [源码实现决策树小专题]决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现
机器学习 - [源码实现决策树小专题]决策树中,信息增益、信息增益率计算以及最佳特征挑选的Python实现
31 0
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
机器学习第3天:线性回归
机器学习第3天:线性回归
19 0

相关产品