【算法导论】二叉树的深度优先遍历

简介: 二叉树的深度优先遍历 二叉树的遍历可以分为深度优先遍历和广度优先遍历。本篇介绍深度优先遍历,下一篇介绍广度优先遍历。         根据二叉树的递归定义可知,二叉树是由根结点(D)、左子树(L)和右子树(R)三个基本部分组成。

二叉树的深度优先遍历

二叉树的遍历可以分为深度优先遍历和广度优先遍历。本篇介绍深度优先遍历,下一篇介绍广度优先遍历。
        根据二叉树的递归定义可知,二叉树是由根结点(D)、左子树(L)和右子树(R)三个基本部分组成。只要能依次遍历这三个基本部分,便可遍历整个二叉树。这三个部分的排列组合为3!=6种,若限定按照先左后右进行遍历,则只有三种遍历方式:DLR(先序)、LDR(中序)、LRD(后序)。
具体实现如下:
#include<stdio.h>
#include<malloc.h>
#include<stdlib.h>

#define maxsize 10
typedef int datatype;
typedef struct node
{
	datatype data;
	struct node *lchild,*rchild;
} bitree;//二叉树的节点结构

bitree* CreatBitree(int* arrayA,int n);//创建二叉树(以顺序存储方式)
void preorder(bitree *p);//先序遍历算法
void midorder(bitree *p);//中序遍历算法
void postorder(bitree *p);//后序遍历算法

void main()
{
	int arrayA[9]={0,1,2,3,4,5,6,7,8};//第一个节点没有用于存储数据,是为了方便计算
	int n=sizeof(arrayA)/sizeof(int);

	bitree *head=NULL;//初始化指向链表的头指针

	head=CreatBitree(arrayA,n);//建立链表

	printf("前序遍历:");
	preorder(head);
	printf("\n中序遍历:");
	midorder(head);
	printf("\n后序遍历:");
	postorder(head);
	printf("\n");
}

bitree* CreatBitree(int* arrayA,int n)//顺序存储 建立二叉树
{
	bitree *root;
	bitree *queue[maxsize];//队列用于保存已输入节点的地址
	bitree *p;
	int front,rear;
	front=1;rear=0;//指向队列的头尾
	root=NULL;

	for(int i=1;i<n;i++)
	{
		p=(bitree*)malloc(sizeof(bitree));//创立节点并赋值
		p->data=arrayA[i];
		p->lchild=NULL;
		p->rchild=NULL;

		rear++;
		queue[rear]=p;

		if(rear==1)//判断是否为输入的第一个节点
			root=p;
		else
		{
			if(i%2==0)//新节点为左孩子
				queue[front]->lchild=p;
			else//新节点为右孩子
			{
				queue[front]->rchild=p;
				front=front+1;
			}
		}

	}

	return root;
}

void preorder(bitree *p)//前序遍历
{
	if(p!=NULL)
	{
		printf("%d ",p->data);
		preorder(p->lchild);
		preorder(p->rchild);
	}
	return;
}

void midorder(bitree *p)//中序遍历
{
	if(p!=NULL)
	{
		
		midorder(p->lchild);
		printf("%d ",p->data);
		midorder(p->rchild);
	}
	return;
}

void postorder(bitree *p)//后序遍历
{
	if(p!=NULL)
	{
		postorder(p->lchild);
		postorder(p->rchild);
		printf("%d ",p->data);
	}
	return;
}
注:如果程序出错,请点击如下链接:  解释说明


目录
相关文章
|
14天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
46 5
|
2月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
2月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
69 5
|
2月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
42 2
|
2月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
58 0
|
3月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
35 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
3月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
42 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
3月前
|
存储 算法
【二叉树】—— 算法题
【二叉树】—— 算法题
【二叉树】—— 算法题
|
3月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
38 0
|
2天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。

热门文章

最新文章