mysql隔离级别

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 原文链接 MySQL InnoDB事务的隔离级别有四级,默认是“可重复读”(REPEATABLE READ)。未提交读(READ UNCOMMITTED)。

原文链接
MySQL InnoDB事务的隔离级别有四级,默认是“可重复读”(REPEATABLE READ)。

  • 未提交读(READ UNCOMMITTED)。另一个事务修改了数据,但尚未提交,而本事务中的SELECT会读到这些未被提交的数据(脏读)。
  • 提交读(READ COMMITTED)。本事务读取到的是最新的数据(其他事务提交后的)。问题是,在同一个事务里,前后两次相同的SELECT会读到不同的结果(不重复读)。
  • 可重复读(REPEATABLE READ)。在同一个事务里,SELECT的结果是事务开始时时间点的状态,因此,同样的SELECT操作读到的结果会是一致的。但是,会有幻读现象(稍后解释)。
  • 串行化(SERIALIZABLE)。读操作会隐式获取共享锁,可以保证不同事务间的互斥。

四个级别逐渐增强,每个级别解决一个问题。

  • 脏读,最容易理解。另一个事务修改了数据,但尚未提交,而本事务中的SELECT会读到这些未被提交的数据。
  • 不重复读。解决了脏读后,会遇到,同一个事务执行过程中,另外一个事务提交了新数据,因此本事务先后两次读到的数据结果会不一致。
  • 幻读。解决了不重复读,保证了同一个事务里,查询的结果都是事务开始时的状态(一致性)。但是,如果另一个事务同时提交了新数据,本事务再更新时,就会“惊奇的”发现了这些新数据,貌似之前读到的数据是“鬼影”一样的幻觉。

借鉴并改造了一个搞笑的比喻:

  • 脏读。假如,中午去食堂打饭吃,看到一个座位被同学小Q占上了,就认为这个座位被占去了,就转身去找其他的座位。不料,这个同学小Q起身走了。事实:该同学小Q只是临时坐了一小下,并未“提交”。
  • 不重复读。假如,中午去食堂打饭吃,看到一个座位是空的,便屁颠屁颠的去打饭,回来后却发现这个座位却被同学小Q占去了。
  • 幻读。假如,中午去食堂打饭吃,看到一个座位是空的,便屁颠屁颠的去打饭,回来后,发现这些座位都还是空的(重复读),窃喜。走到跟前刚准备坐下时,却惊现一个恐龙妹,严重影响食欲。仿佛之前看到的空座位是“幻影”一样。

一些文章写到InnoDB的可重复读避免了“幻读”(phantom read),这个说法并不准确。

做个试验:(以下所有试验要注意存储引擎和隔离级别)

mysql> show create table t_bitfly\G;
CREATE TABLE `t_bitfly` (
`id` bigint(20) NOT NULL default '0',
`value` varchar(32) default NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=gbk

mysql> select @@global.tx_isolation, @@tx_isolation;
+-----------------------+-----------------+
| @@global.tx_isolation | @@tx_isolation  |
+-----------------------+-----------------+
| REPEATABLE-READ       | REPEATABLE-READ |
+-----------------------+-----------------+

试验一:

t Session A                   Session B
|
| START TRANSACTION;          START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| empty set
|                             INSERT INTO t_bitfly
|                             VALUES (1, 'a');
|
| SELECT * FROM t_bitfly;
| empty set
|                             COMMIT;
|
| SELECT * FROM t_bitfly;
| empty set
|
| INSERT INTO t_bitfly VALUES (1, 'a');
| ERROR 1062 (23000):
| Duplicate entry '1' for key 1
v (shit, 刚刚明明告诉我没有这条记录的)

如此就出现了幻读,以为表里没有数据,其实数据已经存在了,傻乎乎的提交后,才发现数据冲突了。

试验二:

t Session A                  Session B
|
| START TRANSACTION;         START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                            INSERT INTO t_bitfly
|                            VALUES (2, 'b');
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                            COMMIT;
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|
| UPDATE t_bitfly SET value='z';
| Rows matched: 2  Changed: 2  Warnings: 0
| (怎么多出来一行)
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | z     |
| |    2 | z     |
| +------+-------+
|
v

本事务中第一次读取出一行,做了一次更新后,另一个事务里提交的数据就出现了。也可以看做是一种幻读。

那么,InnoDB指出的可以避免幻读是怎么回事呢?

http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html

By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoiding the Phantom Problem Using Next-Key Locking”).

准备的理解是,当隔离级别是可重复读,且禁用innodb_locks_unsafe_for_binlog的情况下,在搜索和扫描index的时候使用的next-key locks可以避免幻读。

关键点在于,是InnoDB默认对一个普通的查询也会加next-key locks,还是说需要应用自己来加锁呢?如果单看这一句,可能会以为InnoDB对普通的查询也加了锁,如果是,那和序列化(SERIALIZABLE)的区别又在哪里呢?

MySQL manual里还有一段:

13.2.8.5. Avoiding the Phantom Problem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking with gap locking.

You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the nonexistence of something in your table.

我的理解是说,InnoDB提供了next-key locks,但需要应用程序自己去加锁。manual里提供一个例子:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

这样,InnoDB会给id大于100的行(假如child表里有一行id为102),以及100-102,102+的gap都加上锁。

可以使用show innodb status来查看是否给表加上了锁。

再看一个实验,要注意,表t_bitfly里的id为主键字段。实验三:

t Session A                 Session B
|
| START TRANSACTION;        START TRANSACTION;
|
| SELECT * FROM t_bitfly
| WHERE id<=1
| FOR UPDATE;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           INSERT INTO t_bitfly
|                           VALUES (2, 'b');
|                           Query OK, 1 row affected
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           INSERT INTO t_bitfly
|                           VALUES (0, '0');
|                           (waiting for lock ...
|                           then timeout)
|                           ERROR 1205 (HY000):
|                           Lock wait timeout exceeded;
|                           try restarting transaction
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
|                           COMMIT;
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id   | value |
| +------+-------+
| |    1 | a     |
| +------+-------+
v

可以看到,用id<=1加的锁,只锁住了id<=1的范围,可以成功添加id为2的记录,添加id为0的记录时就会等待锁的释放。

MySQL manual里对可重复读里的锁的详细解释:

http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE),UPDATE, and DELETE statements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition. For a unique index with a unique search condition, InnoDB locks only the index record found, not the gap before it. For other search conditions, InnoDB locks the index range scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by other sessions into the gaps covered by the range.

一致性读和提交读,先看实验,实验四:

t Session A                      Session B
|
| START TRANSACTION;             START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
|                                INSERT INTO t_bitfly
|                                VALUES (2, 'b');
|                                COMMIT;
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
|
| SELECT * FROM t_bitfly LOCK IN SHARE MODE;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| |  2 | b     |
| +----+-------+
|
| SELECT * FROM t_bitfly FOR UPDATE;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| |  2 | b     |
| +----+-------+
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| |  1 | a     |
| +----+-------+
v

如果使用普通的读,会得到一致性的结果,如果使用了加锁的读,就会读到“最新的”“提交”读的结果。

本身,可重复读和提交读是矛盾的。在同一个事务里,如果保证了可重复读,就会看不到其他事务的提交,违背了提交读;如果保证了提交读,就会导致前后两次读到的结果不一致,违背了可重复读。

可以这么讲,InnoDB提供了这样的机制,在默认的可重复读的隔离级别里,可以使用加锁读去查询最新的数据。

http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html

If you want to see the “freshest” state of the database, you should use either the READ COMMITTED isolation level or a locking read:
SELECT * FROM t_bitfly LOCK IN SHARE MODE;


结论:MySQL InnoDB的可重复读并不保证避免幻读,需要应用使用加锁读来保证。而这个加锁度使用到的机制就是next-key locks。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
13天前
|
SQL 安全 关系型数据库
【MySQL基础篇】事务(事务操作、事务四大特性、并发事务问题、事务隔离级别)
事务是MySQL中一组不可分割的操作集合,确保所有操作要么全部成功,要么全部失败。本文利用SQL演示并总结了事务操作、事务四大特性、并发事务问题、事务隔离级别。
【MySQL基础篇】事务(事务操作、事务四大特性、并发事务问题、事务隔离级别)
|
19天前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(04)事务隔离级别、AICD、CAP、BASE原则一直搞不懂? | 看这篇就够了
本文详细介绍了数据库事务的四大特性(AICD原则),包括原子性、隔离性、一致性和持久性,并深入探讨了事务并发问题与隔离级别。同时,文章还讲解了分布式系统中的CAP理论及其不可能三角关系,以及BASE原则在分布式系统设计中的应用。通过具体案例和图解,帮助读者理解事务处理的核心概念和最佳实践,为应对相关技术面试提供了全面的知识准备。
|
3月前
|
存储 SQL 关系型数据库
MySQL的事务隔离级别
【10月更文挑战第17天】MySQL的事务隔离级别
136 43
|
2月前
|
关系型数据库 MySQL 数据库
MySQL事务隔离级别及默认隔离级别的设置
在数据库系统中,事务隔离级别是一个关键的概念,它决定了事务在并发执行时如何相互隔离。MySQL提供了四种事务隔离级别,每种级别都解决了不同的并发问题。本文将详细介绍这些隔离级别以及MySQL的默认隔离级别。
|
3月前
|
存储 关系型数据库 MySQL
RR隔离级别在MySQL中的实现与幻读问题探讨
【10月更文挑战第3天】在数据库管理系统中,事务隔离级别是确保数据一致性和并发性能的关键要素。MySQL作为广泛使用的关系型数据库管理系统,支持多种事务隔离级别,其中可重复读(Repeatable Read,简称RR)是其默认隔离级别。本文将深入探讨RR隔离级别在MySQL中的实现原理,以及RR隔离级别下幻读问题的产生与解决方案。
144 2
|
4月前
|
关系型数据库 MySQL 数据库
深入理解MySQL数据库隔离级别
深入理解MySQL数据库隔离级别
152 1
|
5月前
|
人工智能 小程序 关系型数据库
【MySQL】黑悟空都掌握的技能,数据库隔离级别全攻略
本文以热门游戏《黑神话:悟空》为契机,深入浅出地解析了数据库事务的四种隔离级别:读未提交、读已提交、可重复读和串行化。通过具体示例,展示了不同隔离级别下的事务行为差异及可能遇到的问题,如脏读、不可重复读和幻读等。此外,还介绍了在MySQL中设置隔离级别的方法,包括全局和会话级别的调整,并通过实操演示了各隔离级别下的具体效果。本文旨在帮助开发者更好地理解和运用事务隔离级别,以提升数据库应用的一致性和性能。
153 2
【MySQL】黑悟空都掌握的技能,数据库隔离级别全攻略
|
4月前
|
SQL Oracle 关系型数据库
详解 MySQL 的事务以及隔离级别
详解 MySQL 的事务以及隔离级别
60 0
|
5月前
|
算法 关系型数据库 MySQL
一天五道Java面试题----第七天(mysql索引结构,各自的优劣--------->事务的基本特性和隔离级别)
这篇文章是关于MySQL的面试题总结,包括索引结构的优劣、索引设计原则、MySQL锁的类型、执行计划的解读以及事务的基本特性和隔离级别。
|
6月前
|
SQL 关系型数据库 MySQL
(七)MySQL事务篇:ACID原则、事务隔离级别及事务机制原理剖析
众所周知,MySQL数据库的核心功能就是存储数据,通常是整个业务系统中最重要的一层,可谓是整个系统的“大本营”,因此只要MySQL存在些许隐患问题,对于整个系统而言都是致命的。
159 2

推荐镜像

更多