SQL Server 2012 列存储索引分析(翻译)-阿里云开发者社区

开发者社区> dbaer> 正文

SQL Server 2012 列存储索引分析(翻译)

简介: 列存储索引是SQL Server 2012中为提高数据查询的性能而引入的一个新特性,顾名思义,数据以列的方式存储在页中,不同于聚集索引、非聚集索引及堆表等以行为单位的方式存储。因为它并不要求存储的列必须唯一,因此它可以通过压缩将重复的列合并,从而减少查询时的磁盘IO,提高效率。
+关注继续查看

一、概述

 

列存储索引是SQL Server 2012中为提高数据查询的性能而引入的一个新特性,顾名思义,数据以列的方式存储在页中,不同于聚集索引、非聚集索引及堆表等以行为单位的方式存储。因为它并不要求存储的列必须唯一,因此它可以通过压缩将重复的列合并,从而减少查询时的磁盘IO,提高效率。

为了分析列存储索引,我们先看看B树或堆中的数据的存储方式,如下图,在page1上,数据是按照行的方式存储数据的,假设一行有10列,那么在该页上,实际的存储也会以每行10列的方式存储,如下图中的C1到C10。

假设我们执行select c1,c2 from table时,数据库会读取整个page1,显然,从C3到C10并不是我们想要的数据,但因为数据库每次读的最小单位是一页,因此这些不得不都加载到内存中。如果数据页多时,必然要消耗更过的IO和内存。

image

如果是列存储索引,数据按列的方式存储在一个页面中,如下图,page1中只存储表中C1列,page2只存储c2列,以此类推,page10存储c10列。

假设我们执行select c1,c2 from table时,结果会怎样呢?数据库只会读page1和page2,至于page3到page10因为没有对应的数据,数据库不会去读这些页,也不会加载到内存中,相比行存储而言,减少了磁盘IO和优化了内存的使用。

image

 

下文做了一个技术验证,用来分析列存储索引的查询性能。

思路:做两张一模一样的分区表(分区表可以更好的展示效果),含1000000行数据,然后给其中一张表(sales2)建立聚集索引,另一张表(sales)建列存储索引,最后来对比这两张表的查询性能。

 

二、创建表

 

先做两张相同的表,创建的语句如下:

create partition function pf (date) as range left for values

('20110712', '20110713', '20110714', '20110715', '20110716');

go

create partition scheme ps as partition pf all to ([PRIMARY]);

go

create table sales (

[id] int not null identity (1,1),

[date] date not null,

itemid smallint not null,

price money not null,

quantity numeric(18,4) not null)

on ps([date]);

go

declare @i int = 0;

begin transaction;

while @i < 1000000

begin

declare @date date = dateadd(day, @i /250000.00, '20110712');

insert into sales2 ([date], itemid, price, quantity)

values (@date, rand()*10000, rand()*100 + 100, rand()* 10.000+1);

set @i += 1;

if @i % 10000 = 0

begin

raiserror (N'Inserted %d', 0, 1, @i);

commit;

begin tran;

end

end

commit;

GO

 

三、查询含聚集键的表

 

(1) 创建表sales2的聚集键

CREATE CLUSTERED INDEX Clu_sales2_index ON sales2(date,price,quantity) on ps([date]);

查看表的存储信息

select * from sys.system_internals_partitions p

where p.object_id = object_id('sales2');

select au.* from sys.system_internals_allocation_units au

join sys.system_internals_partitions p

on p.partition_id = au.container_id

where p.object_id = object_id('sales2');

GO

 

image

该表一共有6个分区,其中只有4个分区有数据,每个分区250000行,已使用1089页,。

(2) 执行查询语句 (注意清掉缓存)

SET STATISTICS IO ON;

SET STATISTICS TIME ON;

SELECT COUNT(*),SUM(price*quantity) FROM sales2 WHERE date='20110713';

GO

image

我们可以看到,在这个查询中,一共有1089次逻辑读(等于该表每个分区中的已使用页数),CPU时间为62毫秒,占用时间为261毫秒。

备注:CPU时间,执行语句的时间;

占用时间,从磁盘读取数据开始到完全处理使用的时间。

 

四、查询含列存储索引的表

 

(1) 创建表sales的列存储索引

create columnstore index cs_sales_price on sales ([date], price, quantity) on ps([date]);

查看表的存储信息:

select * from sys.system_internals_partitions p

where p.object_id = object_id('sales')

and index_id = 2;

select au.* from sys.system_internals_allocation_units au

join sys.system_internals_partitions p

on p.partition_id = au.container_id

where p.object_id = object_id('sales')

and index_id = 2;

GO

image

在建有列存储索引后,表的行数并没有改变,每个分区依然还是250000行,但页面数明显减少,且页的类型由原来的IN_ROW_DATA变成了LOB_DATA。

(2) 执行查询语句

select count(*), sum(price*quantity) from sales where date = '20110713'

image

在这个查询中,一共有363次逻辑读(等于该表每个分区),CPU时间为93毫秒,占用时间为191毫秒。

 

总结

从两次查询的结果来看,无论是逻辑读的次数和占用时间,在列存储索引的表中执行查询明显要快于聚集索引的表。

而且,从两种表的存储结构中可以看到,列存储索引占用的页面数量较聚集索引的少,这也印证了列存储索引的压缩功能。

备注:通过两次查询,我们看到两者的CPU时间差距不是很大,相反聚集索引占用的时间更小,考虑到列存储实际上是压缩存储,我认为在一张小表或者简单的表中,对列存储索引差查询或许会占用多的CPU时间,因为查询时需要解压(我没有具体验证过),因此列存储索引在小表中的优势主要体现在IO和空间上,实际上列存储索引的对象往往是含有大数据量的表,数据量越大,其优势体现越明显。

说明:准确的说本文并不是原创,文章是从如下地址翻译过来,然后结合自己的实践,增加了一些自己的理解。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
统计分析SQL Server Profiler 跟踪的SQL
--跟踪文件读入到表中分析 SELECT * INTO ZGSJY FROM fn_trace_gettable('E:\wxxcdbprofiler.trc', default); --某时间内,最耗时SQL select TOP 100 SUBSTRING(Textdata,1,660) as '名称', count(*) as '数量', sum(duration/1000) as
698 0
sql server 索引阐述系列二 索引存储结构
原文:sql server 索引阐述系列二 索引存储结构 一.概述、   "流光容易把人抛,红了樱桃,绿了芭蕉“ 转眼又年中了,感叹生命的有限,知识的无限。在后续讨论索引之前,先来了解下索引和表数据的内部结构,这一节将介绍页的存储,页分配单元类型,区的存储, 最后简要介绍下系统页存储类型,页中的数据结构。
674 0
PostgreSQL 列存, 混合存储, 列存索引, 向量化存储, 混合索引 - OLTP OLAP OLXP HTAP 混合负载应用
PostgreSQL 列存, 混合存储, 列存索引, 向量化存储, 混合索引 - OLTP OLAP OLXP HTAP 混合负载应用
1601 0
Rainbond 内置 ServiceMesh架构分析
在 Cloud Native 架构下,容器的使用给予了异构应用程序的更多可行性,kubernetes 增强的应用的横向扩容能力,用户可以快速的编排出复杂环境、复杂依赖关系的应用程序,同时开发者又无须过分关心应用程序的监控、扩展性、服务发现、负载均衡和分布式追踪这些繁琐的事情而专注于程序开发,赋予开发者更多的创造性。
1040 0
python/pandas数据分析(十六)- 数据索引与选取
我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。 其对应使用的方法如下: 一.
719 0
基于对象存储 OSS 的智能数据分析处理框架和功能
今年参加了 2019 全球闪存峰会(Flash Memory World),分享了“基于云存储的智能数据分析处理架构”,重点介绍在对象存储 OSS 之上的数据处理功能,现整理相关内容和大家探讨。
2131 0
+关注
dbaer
擅长SQL Server、MySQL、云架构部署等
33
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
《2021云上架构与运维峰会演讲合集》
立即下载
《零基础CSS入门教程》
立即下载
《零基础HTML入门教程》
立即下载