大数据分析项目中的“最差”实践

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:
本文讲的是 大数据分析项目中的“最差”实践, 大数据分析现在很火。只要你浏览任何IT出版物或者网站,你都能看到商务智能供应商和他们的系统集成合作伙伴推销帮助企业实施和管理大数据分析系统的产品和服务。这些广告和大数据分析的新闻以及供应商匆匆提供的案例研究可能会使你误认为大数据是很容易的事,误认为要成功部署只需要一种特别的技术。

  如果它是那么简单就好了。当BI供应商乐呵呵地告诉你他们的客户已经成功部署大数据分析项目时,他们不会告诉你还有那么多失败的案例。大数据分析项目令人失望是有一些潜在原因的。你可以找到大量关于大数据分析最佳实践的建议。但下面是一些大数据分析项目的最差实践,你需要了解如何避免它们。

  “盲目跟风。”这种观点重复犯了经典的错误,组织开发他们的第一套数据仓库或者BI系统时经常会犯这样的错误。太多时候,IT和BI以及分析项目管理者被技术炒作所迷惑,忘记了他们首要任务的商业价值;数据分析技术仅仅是一个用来产生商业价值的工具。大数据分析的支持者们不应该盲目地采用产品,他们首先需要判断该技术所服务的业务目标,以便建立业务案例,——然后为手头工作选择正确的分析工具。没有对业务需求的深刻理解,会存在很大风险,项目团队最终可能将创建出一个“大数据磁盘场”,而不是真正对组织有价值的东西,得到的是一个不想要的“数据狗窝”。

  “误认为软件可以回答所有问题。”构建一个分析系统,尤其是涉及大数据的分析系统是非常复杂的,也是资源密集的。因此,许多组织希望他们部署的软件将成为银弹,神奇地实现一切。当然,人们应该明白希望总是比现实更美好。软件确实会带来帮助,有时帮助还会很大。但是大数据分析的效果取决于被分析的数据和使用工具的分析技能。

  “思路太过僵硬。”通常,人们总是不断尝试他们过去的做法,即便当他们面对不同的场景时也会这样。在大数据情况下,一些组织会想当然地认为所谓“大”只是意味着更多的交易和更大的数据量。这种观点可能是正确的,但是许多大数据分析策略会涉及非结构化和半结构化信息,需要以完全不同于企业应用程序和数据仓库中结构化数据的方式管理和分析。因此,我们需要一套新的方法和工具来进行大数据捕获、清洗、存储、集成和访问。

  “忘记过去所有的教训。”有时企业会走向另一个极端,认为大数据中的一切都是完全不同的,他们必须从头开始。对于大数据分析项目的成功,这种错误可能甚至比认为没有不同更要命。只是因为你希望分析的数据结构不同,并不意味着我们已有的数据管理基本原则需要重写。

  “没有必备的业务和分析专业知识。”误认为该技术可以实现一切的必然结果就是,相信所有你需要的只是让IT员工实施大数据分析软件。首先,与上述产生商业价值主题相符合,有效的大数据分析项目必须在系统设计阶段以及持续运营过程中结合广泛的业务和行业知识。其次,许多组织低估了他们需要分析技能的程度。如果大数据分析仅仅是构建报表和仪表盘,企业可能可以利用他们现有的BI专业技能。然而,大数据分析通常涉及更高级的过程,比如数据挖掘和预测分析。这需要具备统计、决算以及其它高级技能的分析专业人士,这可能意味着组织需要新聘请人员来迈出向高级分析进军的第一步。

  “把项目当作科学实验。”太多时候,公司衡量大数据分析项目的成功仅仅是通过数据收集和分析来进行。而事实上,收集和分析数据只是开始。如果结合了业务流程,并促使业务经理们和用户们为改善组织绩效和业绩而付诸行动之后,分析才能产生商业价值。要获得真正的效率,就需要把分析项目纳入反馈闭环,以便交流分析结果,然后基于经营业绩提炼分析模型。

  “承诺太多,想做的太多。”许多大数据分析项目陷入了一个大误区:支持者过度宣扬他们部署的系统会有多么快,业务会获得多么重大的益处。过度的承诺和交付的不足必然导致业务与技术的分离,这样组织一般会很长时间都推迟特定技术的选用——即便其它许多公司已经使用该技术获得了成功。此外,当你设定了很轻松很快就能获益的预期,业务主管就有一种认识倾向,容易低估了需要参与和承担义务的程度。当足够资源不能兑现的话,预期的收益通常不会来的容易或者迅速,那么项目基本就贴上了失败的标签

  大数据分析可以给组织带来很大的商业价值,但是如果你不小心,不从其它公司犯的错误中吸取教训的话,它也可以带来灾难。谨记上述的几点问题,切莫成为大数据分析项目的反面典型。


作者:冯昀晖 译

来源: IT168

原文标题:大数据分析项目中的“最差”实践


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
3月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
3月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
222 49
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
2月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
2月前
|
人工智能 Cloud Native 算法
拔俗云原生 AI 临床大数据平台:赋能医学科研的开发者实践
AI临床大数据科研平台依托阿里云、腾讯云,打通医疗数据孤岛,提供从数据治理到模型落地的全链路支持。通过联邦学习、弹性算力与安全合规技术,实现跨机构协作与高效训练,助力开发者提升科研效率,推动医学AI创新落地。(238字)
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
3月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
3月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

热门文章

最新文章