中国人工智能学会通讯——机器学习在商务智能中的创新应用 1.3 结构化的知识

简介:

1.3 结构化的知识

我想说明一下图中的“小泡”,也就是开放数据连接“小泡”。我不知道你们有多少人从事这个领域,我之后可能会介绍。外部有很多东西,公司内部也有一些其他的东西,我们都知道公共知识有很大的增长,我们利用它可以做很多事情。如果说我们把整个维基百科中的东西都印刷出来,就像印刷出版《百科全书》那样,那会是多么庞大的工作。

公共知识为什么对我们来说会如此重要?这些非结构化的数据以文本形式储存在图书馆,因为收集整理这些数据是迈向数据结构化的重要一步。另外,我们还有知识图谱,比如谷歌将最早的免费知识图谱进行完善后免费将其回馈给社会,还有像Bing、百度等也在做这项工作,这跟建造工厂不是一回事。

image

如果说现在随机选择一个美国的搜索引擎进行搜索,我们会在搜索结果页面的右侧看到一些小框,它们并不来自于文件,左边是来自于文件,是典型搜索引擎的搜索结果。在右边,我们看到的东西其实都是来自于知识图谱的非结构化知识。

现在有越来越多的团体和企业想要做这样的一些知识图谱,我这边列出了一些。第一个Yago是在赛尔布鲁肯,非常有名。第二个是DBpedia,他们在欧洲做开放数据库,他们努力将很多领域的知识集中在一起。我们也跟他们有合作。Freebase还在,但是大不如前,它已成为Wikidata的一部分。大家可能都知道Wikidata,当然也有些中国人并不知道,Wikidata积极倡导将非结构化知识转化为结构化知识,它在此类项目中是最大的。Wikidata基金位于柏林,我们和他们在相关项目上有非常密切的合作。我在这里就不说Google Knowledge Vault了,因为它已不再那么干净了,其中部分或大部分都是自动收集的数据。

image

上面这张图其实有好几年的历史了,为什么没新的?这张照片的每一个小泡泡,都是一些基于数据的语意知识或者结构式知识库,一些像是Web 3.0,一些更像是语意网络,还有一些更像是数据库。但是其实它们在语意上面都是相互联系的,形成相互联系的开放数据。每个小泡上都至少有一种联系,将其与其他小泡连接在一起,在这么多泡泡当中,你会看电影数据库、名人信息数据库、化学元素数据库等。为什么已经过了好几年我们还在用这张图?因为现在这样的一张图没有办法再把其他这几年新的内容加进去,这张图已经容纳不下。

我们把DBpedia的数据库放在中心,因为他们正在努力将其他的数据库连接起来。在我们的项目当中,我们做了一个尝试,希望能够在工业应用中将不同数据类型连接在一起,一些我们使用的方法是和DBpedia的方法相同,用以解决一些行业问题。

image

从这边可以看到,有一些比较特殊的数据,这些数据你只能和大公司合作才能获得,比如你在阿里、京东工作,或者是大型的物流企业、电信企业。但是右边的数据就便宜的多,比如气象学数据、媒体新闻数据、地理数据和卫星数据等,这些都非常容易获得。但是图最上方的是科学知识、知识社区(包括维基百科)、其他开放数据等,蓝色方框中的是企业内部的数据。如果将不同来源的数据整合在一起,就会带来巨大的价值。

如果我们要为某一地区开发一个运输分析APP,可能会用到交通数据和开源知识社区数据,后者会为你提供开放式街景图、场所、产品类型、包装等一些信息。还有就是气象学数据,因为对运输而言,气象非常的重要。你还可以从物流公司获取地理数据和卫星数据。如果能够垂直整合这些数据,你就能够做出非常棒的产品。

相关文章
|
2天前
|
机器学习/深度学习 监控 算法
机器学习在图像识别中的应用:解锁视觉世界的钥匙
机器学习在图像识别中的应用:解锁视觉世界的钥匙
147 95
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
44 0
|
24天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
31 0
|
9天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
68 27
|
15天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
10天前
|
机器学习/深度学习 数据采集 运维
机器学习在运维中的实时分析应用:新时代的智能运维
机器学习在运维中的实时分析应用:新时代的智能运维
54 12
|
10天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
128 10
|
17天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
62 9
|
22天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
39 12
|
20天前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####

热门文章

最新文章