阿里云MVP Meetup:《云数据·大计算:海量日志数据分析与应用》之《数据分析展现:可视化报表及嵌入应用》篇

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 本手册为杭州阿里云MVP Workshop《云计算·大数据:海量日志数据分析与应用》的《数据分析展现:可视化报表及嵌入应用》篇而准备。主要阐述如何使用BDP个人版制作报表,将前面几个实验处理分析得来的数据进行有效的展现和洞察。

实验背景介绍

本手册为阿里云MVP Meetup Workshop《云计算·大数据:海量日志数据分析与应用》的《数据分析展现:可视化报表及嵌入应用》篇而准备。主要阐述如何使用Quick BI制作报表,将前面几个实验处理分析得来的数据进行有效的展现和洞察。

《数据加工:用户画像》实验中的结果表数据已经事先导入RDS中,表名为rpt_user_info_all_d。该表包含了:用户id、地区、性别、年龄范围、星座、访问设备、PV 等访问信息。

实验目标

承接前述实验加工好的数据表,通过Quick BI完成网站用户分析画像的仪表板。

  • 在该仪表板中,将展示用户的地区分布、设备分布和访问明细记录。
  • 并能够根据年龄范围的查询条件,动态更新图表数据内容。

涉及大数据产品

实验环境准备

必备条件:

确保阿里云账号处于登录状态。

  • step1:点击进入大数据(数加)管理控制台>Quick BI tab页面下。
  • step2:点击购买Quick BI标准版

开通BI

  • step3:在购买页面中,点击立即购买
    购买BI
  • step4:在确认订单页面中点击去支付,并确认支付

支付

确认支付

  • step5:成功开通Quick BI。

开通成功

进入Quick BI

确保阿里云账号处于登录状态。

Quick BI管理控制台

  • step2:点击进入Quick BI标准版。

点击进入

Quick BI页面

添加数据源

《数据加工:用户画像》实验将数据导入云数据库RDS后,可以利用Quick BI添加为数据源进行分析和展示。本章节为了大家快速的掌握Quick BI的使用提前将数据给大家拷贝了一份在官方的RDS里,大家只需要配置即可用。

  • step1:点击左侧数据,进入数据管理页。

点击数据

  • step2:切换至数据源标签页,点击新建数据源

点击新建数据源

[说明] 数据量千万级别,响应速度秒级。添加RDS数据源,可以直联任何一个云上RDS数据库,或ECS中用户自建的RDS。

  • step3:在新建数据源对话框中,选择并点击RDS for MySQL

点击MySQL

  • step4:配置RDS for MySQL数据源,并点击测试连通性,待连通性测试通过后,点击添加保存现有配置信息。

配置MySQL

RDS for MySQL数据源配置信息如下:

  • 显示名称:workshop
  • 数据库地址:

rm-bp1z69dodhh85z9qa.mysql.rds.aliyuncs.com

  • 端口:3306
  • 数据库:workshop
  • 用户名/密码:workshop/workshop#2017

保存RDS数据源

  • step5:点击数据源列表页中workshop数据源这行,显示该数据源下的数据表,找到表rpt_user_info_all_d,并点击创建数据集按钮生成数据集。

找数据表

数据集

编辑数据集

说明:

    1. 将对表的加工过程固化保存下来以避免重复操作。
    1. 常见加工:维度、度量的切换、修改维度的类型、

增加计算字段、创建层次结构、修改字段的数据类型、更改度量聚合方式、
制作关联模型。

  • step1:点击编辑按钮,进入编辑数据集页面。

编辑数据集

  • step2:转换包含地理信息的字段的维度类型(一般字段不需要转换)。选择region字段->右键->维度类型切换->地理信息->省/直辖市。如下图所示:

类型转换

转换成功后,在左侧维度栏中会看到region字段前多一个地理位置图标,如下图所示:

转换成功

  • step3:点击保存,保存数据集。

保存数据集

制作工作表

说明:

    1. 主要用于对于数据全方位的探索分析。
    1. 支持随意对维度、度量进行拖拽选择后进行查询,得到工作表内容,支持对维度、度量的过滤,支持排序,支持报表样式的设置。
    1. 保存的工作表,可以做为下一章节【制作仪表板】的数据来源,直接展现

下面希望获得每个地区(region),不同设备(device),不同性别(gender),不同年龄范围(age_range)的访问网站的pv量。

  • step1:点击左侧数据,找到数据集rpt_user_info_all_d 这行,点击表格分按钮,就会新建一个工作表对该数据集进行多维分析。

点击表格分析

表格分析页面

  • step2:分别选择需要分析的维度:region、device、gender、age_range并拖拽至分析面板中,选择度量pv拖拽至分析面板中的中,点击查询按钮, 得到每个地区、不同设备、不同性别、不同年龄范围的访问网站的pv量。

制作报表1

  • step3:点击保存,保存工作表名称为:访问明细。

制作仪表板

与上一节衔接,将分析结果固化为可视化报表。随着数据的更新,报表可视化展现最新数据。我们把这个过程叫制作仪表板。

制作思路:确定内容->确定布局和样式->制作图表->实现动态联动查询。

制作模板如下:

制作目标

【说明】仪表板创作界面的工具布局:

  • step1:点击主导航上的作品菜单,点击新建下拉菜单下的新建空白仪表板按钮,就可以开始创建一个仪表板。

点击新建空白仪表板

  • step2:从仪表板空间中向画布拖入文本框并命名为网站用户画像。

文本框

文本框-用户画像

  • step3:点击图表区域内的色彩地图,并选择数据源来源为来自数据集rpt_user_info_all_d,选择维度为region(地区)、度量为pv,选择完成后点击更新图表按钮,结果如下:

业务目的:查看访问用户的地域分布情况。

色彩地图

  • step4:将图表区域内的柱图拖拽至右侧画布,并配置选择数据来源为来自数据集rpt_user_info_all_d,选择维度为device(设备)、度量为pv,点击更新图表
    结果如下:

业务目的:查看访问设备的分布情况.

柱图

  • step5:点击图表区域内的交叉表,并选择数据源>来自工作表>访问明细(上述步骤中保存的工作表),点击更新图表按钮,结果如下:

业务目的:查看每个地区(region)、不同设备(device)、不同性别(gender),不同年龄范围(age_range)的访问网站的pv量。

交叉表

  • step6:向画布中拖入控件区域内的查询条控件,在拖动指示分隔线落到文本框气泡地图之间的时候,放下查询条件控件。

业务目的:增加查询条件年龄范围,实现动态图表。

插入查询条件

拖动结束后,设置查询条件对应的字段、作用范围和样式:

  • step6.1:首先将前面制作好的色彩地图、柱状图和交叉表控件的标题依次改为,地区分布和设备分布。

地图分布

设备分布

  • step6.2:接着,点击并设置查询条件对应到哪个字段和作用范围(上述配置的两个控件名称):变化的时候能影响到哪些图表控件。

配置查询条件

  • step6.3:然后设置查询条件的显示样式,这里设置为枚举类型复选框样式。

[注意]鼠标选中查询条件的输入框后,样式设置界面才会出现。

查询条件枚举

  • step7:点击保存仪表板,名称为云栖大会workshop

保存仪表板

  • step8:点击预览仪表板。

预览

修改年龄范围为不同的值,看仪表板的各个区块的图表的数据是否随着查询条件的变化而变化。

预览验证

恭喜各位已经完成了数据清洗、加工到展现的链路。更多的关于Quick BI的进阶教程,详见:更多案例(销售数据分析、仪表板制作)

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
5月前
|
SQL 人工智能 数据挖掘
阿里云DMS,身边的智能化数据分析助手
生成式AI颠覆了人机交互的传统范式,赋予每个人利用AI进行低门槛数据分析的能力。Data Fabric与生成式AI的强强联合,不仅能够实现敏捷数据交付,还有效降低了数据分析门槛,让人人都能数据分析成为可能!阿里云DMS作为阿里云统一的用数平台,在2021年初就开始探索使用Data Fabric理念构建逻辑数仓来加速企业数据价值的交付,2023年推出基于大模型构建的Data Copilot,降低用数门槛,近期我们将Notebook(分析窗口)、逻辑数仓(Data Fabric)、Data Copilot(生成式AI)进行有机组合,端到端的解决用数难题,给用户带来全新的分析体验。
111167 119
阿里云DMS,身边的智能化数据分析助手
|
5月前
|
存储 算法 数据挖掘
带你读《Apache Doris 案例集》——06 Apache Doris 助力中国联通万亿日志数据分析提速10倍(2)
带你读《Apache Doris 案例集》——06 Apache Doris 助力中国联通万亿日志数据分析提速10倍(2)
225 1
|
5月前
|
存储 安全 数据挖掘
带你读《Apache Doris 案例集》——06 Apache Doris 助力中国联通万亿日志数据分析提速10倍(1)
带你读《Apache Doris 案例集》——06 Apache Doris 助力中国联通万亿日志数据分析提速10倍(1)
221 1
|
2月前
|
SQL 数据管理 关系型数据库
SQL与云计算:利用云数据库服务实现高效数据管理——探索云端SQL应用、性能优化、安全性与成本效益,为企业数字化转型提供全方位支持
【8月更文挑战第31天】在数字化转型中,企业对高效数据管理的需求日益增长。传统本地数据库存在局限,而云数据库服务凭借自动扩展、高可用性和按需付费等优势,成为现代数据管理的新选择。本文探讨如何利用SQL和云数据库服务(如Amazon RDS、Google Cloud SQL和Azure SQL Database)实现高效的数据管理。通过示例和最佳实践,展示SQL在云端的应用、性能优化、安全性及成本效益,助力企业提升竞争力。
50 0
|
3月前
|
存储 数据挖掘 OLAP
阿里云 EMR Serverless StarRocks OLAP 数据分析场景解析
阿里云 E-MapReduce Serverless StarRocks 版是阿里云提供的 Serverless StarRocks 全托管服务,提供高性能、全场景、极速统一的数据分析体验,具备开箱即用、弹性扩展、监控管理、慢 SQL 诊断分析等全生命周期能力。内核 100% 兼容 StarRocks,性能比传统 OLAP 引擎提升 3-5 倍,助力企业高效构建大数据应用。本篇文章对阿里云EMR Serverless StarRocks OLAP 数据分析场景进行解析、存算分离架构升级以及 Trino 兼容,无缝替换介绍。
19170 12
|
5月前
|
存储 安全 数据挖掘
性能30%↑|阿里云AnalyticDB*AMD EPYC,数据分析步入Next Level
第4代 AMD EPYC加持,云原生数仓AnalyticDB分析轻松提速。
性能30%↑|阿里云AnalyticDB*AMD EPYC,数据分析步入Next Level
|
3月前
|
运维 数据挖掘 Serverless
深度解析阿里云EMR Serverless StarRocks在OLAP数据分析中的应用场景
阿里云EMR Serverless StarRocks作为一款高性能、全场景覆盖、全托管免运维的OLAP分析引擎,在企业数据分析领域展现出了强大的竞争力和广泛的应用前景。通过其卓越的技术特点、丰富的应用场景以及完善的生态体系支持,EMR Serverless StarRocks正逐步成为企业数字化转型和智能化升级的重要推手。未来随着技术的不断进步和应用场景的不断拓展我们有理由相信EMR Serverless StarRocks将在更多领域发挥重要作用为企业创造更大的价值。
|
5月前
|
消息中间件 编解码 运维
阿里云 Serverless 异步任务处理系统在数据分析领域的应用
本文主要介绍异步任务处理系统中的数据分析,函数计算异步任务最佳实践-Kafka ETL,函数计算异步任务最佳实践-音视频处理等。
175616 349
|
4月前
|
SDN 网络虚拟化 虚拟化
云数据中心中的SDN/NFV应用
【6月更文挑战第9天】计算和存储虚拟化技术在云计算IDC中已基本满足需求,但网络成为新瓶颈,主要问题包括虚拟化环境下的网络配置复杂度增加、拓扑展现困难和无法动态调整资源。
|
5月前
|
存储 安全 数据挖掘
性能30%↑|阿里云AnalyticDB X AMD EPYC,数据分析步入Next Level
阿里云原生数仓 AnalyticDB for PostgreSQL 与 AMD 新一代硬件深度优化,结合全自研计算引擎及行列混合存储实现性能升级,综合性能提升30%。结合丰富的企业级能力帮助企业构建离在线一体、流批一体综合数据分析平台,采用同一引擎即可满足离线批处理、流式加工,交互式分析三种场景,在开发运维、时效性及成本上具备更高的性价比。
487 0