《中国人工智能学会通讯》——8.17 为何需要机器学习

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第8章,第8.17节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

8.17 为何需要机器学习

一个算法成功的关键在于其运行机制是否与待求解问题的特性相吻合。换言之,给定一个(或一类)待求解的问题,算法设计的目的是寻求一个与该问题相匹配的算法。在过去,复杂问题的求解往往高度依赖于领域专家的先验知识。这一般又可分为两种思路,其一,利用先验知识对问题进行适度抽象和简化,将一个复杂问题转化为一个相对简单的、经典的问题(如线性规划、二次规划问题),从而可以直接利用已有的成熟算法求解;其二,不简化问题模型,直接利用先验知识设计新的算法。若将算法与问题表示为一个二元组,这两种思路可被直观地理解为“固定算法改问题”和“固定问题找算法”,其共性在于均需要有比较充分的先验知识。然而,现实世界中的复杂优化问题不仅可能具有非凸、不连续、不可微等复杂的数学性质,甚至有可能具有“黑盒”的特点,即我们无法得到问题的形式化表述,而仅能通过实验评价算法或候选解的好坏。这些特点给获取问题先验知识增添了很多难度,进而对算法设计提出了巨大的挑战。

EA 的运行过程可以被视为算法与问题迭代交互的过程,期间会产生大量关于问题的数据(例如某个候选解的质量)。在先验知识难以获取的情况下,一个很自然的想法是能否利用机器学习的手段,分析演化过程中产生的数据,发现有助于问题求解的知识(如图 1 所示),进而提升算法的性能。具体地说,机器学习可以自然用于 EA 的几个主要步骤:初始化,分析问题特征以产生分布更均匀或更靠近最优解的初始群体;停止条件估计,分析算法的搜索状态以确定是否停止算法;后代生成,分析群体特征以获取群体全局或局部分布并指导产生有偏好的新解;群体更新,分析并选择最有希望的候选解。从机器学习的角度而言,监督学习、非监督学习、增强学习等各类方法均有可能用于从上述的不同侧面或角度学习与待求解问题有关的知识。

image

相关文章
|
14天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
51 3
|
3天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
5天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
18 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
21 2
|
9天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
30 2
|
20天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
8天前
|
机器学习/深度学习 人工智能 安全
人工智能与机器学习在网络安全中的应用
人工智能与机器学习在网络安全中的应用
25 0