《中国人工智能学会通讯》——2.26 基于深度学习的机器翻译研究进展

本文涉及的产品
文本翻译,文本翻译 100万字符
图片翻译,图片翻译 100张
NLP 自学习平台,3个模型定制额度 1个月
简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第2章,第2.26节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

2.26 基于深度学习的机器翻译研究进展

机器翻译研究如何利用计算机实现自然语言的自动转换,是人工智能和自然语言处理的重要研究领域之一。机器翻译大致可分为理性主义和经验主义两类方法。

基于理性主义的机器翻译方法 , 主张由人类专家通过编纂规则的方式 , 将自然语言之间的转换规律“传授”给计算机。这种方法的主要优点是能够显式描述深层次的语言转换规律。然而,理性主义方法对于人类专家的要求非常高,不仅能够通晓源语言和目标语言,而且需具备一定的语言学和翻译学理论功底,同时熟悉待翻译文本所涉及领域背景知识,还需熟练掌握相关计算机操作技能。这使得研制系统的人工成本高、开发周期长,面向小语种开发垂直领域的机器翻译因人才稀缺而变得极其困难。此外,当翻译规则库达到一定的规模后,如何确保新增的规则与已有规则不冲突也是非常大的挑战。因此,翻译知识获取成为基于理性主义的机器翻译方法所面临的主要挑战。

基于经验主义的机器翻译方法 , 主张计算机自动从大规模数据中“学习”自然语言之间的转换规律。随着互联网文本数据的持续增长和计算机运算能力的不断增强,数据驱动的统计方法从上世纪 90年代起开始逐渐成为机器翻译的主流技术。统计机器翻译为自然语言翻译过程建立概率模型并利用大规模平行语料库训练模型参数,具有人工成本低、开发周期短的优点,克服了传统理性主义方法所面临的翻译知识获取瓶颈问题,因而成为 Google、微软、百度、有道等国内外公司在线机器翻译系统的核心技术。尽管如此,统计机器翻译仍然在以下六个方面面临严峻挑战。

● 线性不可分:统计机器翻译主要采用线性模型,处理高维复杂语言数据时线性不可分的情况非常严重,导致训练和搜索算法难以逼近译文空间的理论上界。

● 缺乏合适的语义表示:统计机器翻译主要在词汇、短语和句法层面实现源语言文本到目标语言文本的转换,缺乏表达能力强、可计算性高的语义表示支持机器翻译实现语义层面的等价转换。

● 难以设计特征:统计机器翻译依赖人类专家通过特征来表示各种翻译知识源。由于语言之间的结构转换非常复杂,人工设计特征难以保证覆盖所有的语言现象。

● 难以充分利用非局部上下文:统计机器翻译主要利用上下文无关的特性设计高效的动态规划搜索算法,导致难以有效将非局部上下文信息容纳在模型中。

● 数据稀疏:统计机器翻译中的翻译规则(双语短语或同步文法规则)结构复杂,即便是使用大规模训练数据,仍然面临着严重的数据稀疏问题。

● 错误传播:统计机器翻译系统通常采用流水线架构,即先进行词法分析和句法分析,再进行词语对齐,最后抽取规则。每一个环节出现的错误都会放大传播到后续环节,严重影响了翻译性能。由于深度学习能够较好地缓解统计机器翻译所面临的上述挑战,基于深度学习的方法自 2013 年之后获得迅速发展,成为当前机器翻译领域的研究热点。基于深度学习的机器翻译大致可以分为两类方法。

● 利用深度学习改进统计机器翻译:仍以统计机器翻译为主体框架,利用深度学习改进其中的关键模块。

● 端到端神经机器翻译:一种全新的方法体系,直接利用神经网络实现源语言文本到目标语言文本的映射。

下面对这两类基于深度学习的机器翻译方法进行简要介绍。

相关文章
|
2天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
25 3
|
4天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
37 8
|
3天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
15 2
|
6天前
|
机器学习/深度学习 人工智能 物联网
深度学习:物联网大数据洞察中的人工智能
深度学习:物联网大数据洞察中的人工智能
|
8天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
24 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
4天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
23 0
|
4天前
|
机器学习/深度学习 数据采集 人工智能
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第26天】近年来,深度学习技术在医学影像诊断中的应用日益广泛,通过训练大量医学影像数据,实现对疾病的准确诊断。例如,卷积神经网络(CNN)已成功用于识别肺癌、乳腺癌等疾病。深度学习不仅提高了诊断准确性,还缩短了诊断时间,提升了患者体验。然而,数据隐私、数据共享和算法透明性等问题仍需解决。未来,AI将在医学影像诊断中发挥更大作用,成为医生的得力助手。
16 0
|
8天前
|
机器学习/深度学习 人工智能 物联网
深度学习:物联网大数据洞察中的人工智能
深度学习:物联网大数据洞察中的人工智能
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习:解锁人工智能的无限潜能
本文深入探讨了深度学习这一革命性技术如何推动人工智能领域的发展。通过分析其基本原理、关键技术里程碑以及在多个行业中的应用案例,揭示了深度学习如何成为现代科技发展的核心驱动力。文章旨在为读者提供一个全面而深入的理解框架,展示深度学习不仅仅是一种技术趋势,更是未来创新与变革的关键所在。
|
12天前
|
机器学习/深度学习 数据采集 人工智能
数据驱动的AI技术:如何通过深度学习提升图像识别精度
【10月更文挑战第18天】 数据驱动的AI技术:如何通过深度学习提升图像识别精度
24 0

热门文章

最新文章