《网络空间欺骗:构筑欺骗防御的科学基石》一3.3 恶意软件模型

简介: 本文讲的是网络空间欺骗:构筑欺骗防御的科学基石一3.3 恶意软件模型,本节书摘来华章计算机《网络空间欺骗:构筑欺骗防御的科学基石》一书中的第3章,第3.3节, Cyber Deception: Building the Scientific Foundation 苏西尔·贾乔迪亚(Sushil Jajodia)V. S.苏夫拉曼尼(V. S. Subrahmanian)[美] 维平·斯沃尔(Vipin Swarup) 著 克利夫·王(Cliff Wang) 马多贺 雷程 译 译更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.3 恶意软件模型

本文讲的是网络空间欺骗:构筑欺骗防御的科学基石一3.3 恶意软件模型,为了在实际条件下实施我们的方法,我们分析了实际的恶意软件,并寻求能够确定程序运行的一些可测量属性,这些属性可作为恶意行为的指标。我们特别对使用网络资源以及本地资源的程序较为感兴趣,因为它们代表了大多数现代恶意软件,这些恶意软件不仅执行本地任务,而且还参与比如僵尸网络中的某种形式的命令和控制。与静态特征分析和端点异常检测不同,我们将端节点和网络的观测结果相结合,以提供对正在运行程序的完整描述。通过将这些指标与良性活动的观测结果进行比较,可以得出恶意软件对单个传感器的影响,以及这些传感器可能具有的阈值等结论。
这涉及样例收集、粗略分析和筛选、现场分析和指示等多个步骤过程,具体如图3.7所示。其每个步骤的具体描述如下。
screenshot

原文标题:网络空间欺骗:构筑欺骗防御的科学基石一3.3 恶意软件模型

相关文章
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于BP神经网络的苦瓜生长含水量预测模型matlab仿真
本项目展示了基于BP神经网络的苦瓜生长含水量预测模型,通过温度(T)、风速(v)、模型厚度(h)等输入特征,预测苦瓜的含水量。采用Matlab2022a开发,核心代码附带中文注释及操作视频。模型利用BP神经网络的非线性映射能力,对试验数据进行训练,实现对未知样本含水量变化规律的预测,为干燥过程的理论研究提供支持。
|
11天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
36 2
|
11天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
33 1
|
1月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
网络协议与IO模型
|
1月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
74 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
22天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
1月前
|
安全 NoSQL Java
一文搞懂网络通信的基石✅IO模型与零拷贝
【10月更文挑战第1天】本文深入探讨了网络通信中的IO模型及其优化方法——零拷贝技术。首先介绍了IO模型的概念及五种常见类型:同步阻塞、同步非阻塞、多路复用、信号驱动和异步IO模型。文章详细分析了每种模型的特点和适用场景,特别是多路复用和异步IO在高并发场景中的优势。接着介绍了零拷贝技术,通过DMA直接进行数据传输,避免了多次CPU拷贝,进一步提升了效率。最后总结了各种模型的优缺点,并提供了相关的代码示例和资源链接。
一文搞懂网络通信的基石✅IO模型与零拷贝
|
28天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
开发者
什么是面向网络的IO模型?
【10月更文挑战第6天】什么是面向网络的IO模型?
22 3
|
1月前
|
数据挖掘 开发者
网络IO模型
【10月更文挑战第6天】网络IO模型
42 3
下一篇
无影云桌面