《R语言游戏数据分析与挖掘》一导读

简介: 随着大数据的概念越来越流行,越来越多的企业开始重视数据,期待从数据中寻找有价值的结论,以指导公司管理层决策,最终创造更大的价值。但是在游戏行业,数据分析的发展相对缓慢,很多游戏公司是在发现人口红利消失后才逐渐重视数据,希望利用数据驱动产品。

image

前  言

为什么要写这本书
随着大数据的概念越来越流行,越来越多的企业开始重视数据,期待从数据中寻找有价值的结论,以指导公司管理层决策,最终创造更大的价值。但是在游戏行业,数据分析的发展相对缓慢,很多游戏公司是在发现人口红利消失后才逐渐重视数据,希望利用数据驱动产品。而在各种数据分析技术中,R语言作为一个可进行交互式数据分析和探索的强大平台,拥有举足轻重的作用。R语言的免费开源使得很多公司用它来处理数据、展示数据、分析数据、完成模型。
使用R语言可以进行游戏数据分析系统的搭建,可以对累积的海量游戏数据进行挖掘,找出其中的特征和规律。对于有志成为互联网数据挖掘/分析师的读者来说,R语言将成为他们未来必备的技能之一。
笔者在历届中国R语言会议演讲时,都会遇到一些同学问类似这样的问题:“是否学好数据挖掘工具就能胜任数据分析工作?”虽然这些学生都具备很好的理论和工具使用能力,但是缺乏对实际生产数据的处理能力,即学生们很少接触到企业的真实数据,不知道如何将脏数据处理为可以建模的数据集。这也是笔者写这本书的初衷。在本书中,笔者希望结合自己多年的数据挖掘实战经验,将R语言与游戏数据分析有机结合,真正做到“授之以渔”。
本书特色
本书从实际应用出发,结合实例及应用场景,通过对大量案例进行详细阐述和深入分析,进而指导读者在实际工作中通过R语言对游戏数据进行分析和挖掘。
本书的核心是游戏数据分析实战,所以在案例讲解过程中均会对分析结果进行业务解读,进而帮助数据分析师提高“利用结果数据指导实际商务决策”的能力。
基于对业务的思考,本书从解决问题入手,以游戏为最佳切入点,辐射整个数据分析领域,并完成数据分析和挖掘建模工作,对其他行业的数据分析师如何做数据分析/挖掘也具有很大的启发性。同时,本书内容涵盖了R语言基础、数据挖掘理论与实战、交互式绘图和Web网页开发等,故也可以作为数据挖掘的入门书籍。

目 录

第1章 什么是游戏数据分析
1.1 为什么要对游戏进行分析
1.2 游戏数据分析的流程
1.3 数据分析师的能力要求
1.4 小结
第2章 必备R语言基础
2.1 开发环境准备和快速入门
2.2 数据对象
2.3 数据导入
2.4 小结
第3章 R语言绘图重要技术
3.1 常用图形参数
3.2 低级绘图函数
3.3 高级绘图函数
3.4 小结

相关文章
|
2月前
|
数据挖掘 PyTorch TensorFlow
|
15天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
35 2
|
16天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
21 2
|
1月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
38 1
|
3月前
|
数据采集 算法 数据挖掘
10余位大佬+10余年经验的结晶:Python数据分析与挖掘实战
LinkedIn 对全球超过3.3亿用户的工作经历和技能进行分析后得出,目前最炙手可热的25 项技能中,数据挖掘排名第一。那么数据挖掘是什么? 数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。 今天给小伙伴们分享的Python数据分析与数据挖掘手册是10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、
10余位大佬+10余年经验的结晶:Python数据分析与挖掘实战
|
2月前
|
数据采集 算法 搜索推荐
R语言营销数据分析:使用R进行客户分群的实践探索
【9月更文挑战第1天】R语言以其强大的数据处理和统计分析能力,在金融数据分析、营销数据分析等多个领域发挥着重要作用。通过R语言进行客户分群,企业可以更好地理解客户需求,制定精准的营销策略,提升市场竞争力和客户满意度。未来,随着大数据和人工智能技术的不断发展,R语言在营销数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 算法 数据挖掘
10余位大佬+10余年经验的结晶:Python数据分析与挖掘实战
LinkedIn 对全球超过3.3亿用户的工作经历和技能进行分析后得出,目前最炙手可热的25 项技能中,数据挖掘排名第一。那么数据挖掘是什么? 数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。 今天给小伙伴们分享的Python数据分析与数据挖掘手册是10余位数据挖掘领域资深专家和科研人员,10余年大数据挖掘咨询与实施经验结晶。从数据挖掘的应用出发,以电力、
|
4月前
|
数据挖掘 PyTorch TensorFlow
Python数据分析新纪元:TensorFlow与PyTorch双剑合璧,深度挖掘数据价值
【7月更文挑战第30天】随着大数据时代的发展,数据分析变得至关重要,深度学习作为其前沿技术,正推动数据分析进入新阶段。本文介绍如何结合使用TensorFlow和PyTorch两大深度学习框架,最大化数据价值。
101 8
|
3月前
|
机器学习/深度学习 数据可视化 数据挖掘
为啥我敢说Python是数据分析界的扛把子语言?
为啥我敢说Python是数据分析界的扛把子语言?
|
3月前
|
机器学习/深度学习 数据采集 运维
数据分析与挖掘
数据分析与挖掘
下一篇
无影云桌面