《构建实时机器学习系统》一3.4 数据分析的三个要点

简介: 本节书摘来自华章出版社《构建实时机器学习系统》一 书中的第3章,第3.4节,作者:彭河森 汪涵,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.4 数据分析的三个要点

本书后面的章节中将会以前面发现的均值回归的性质为依托,设计实时机器学习交易策略进行交易。好多读者看到这里可能已经跃跃欲试,等不及要开始搭建服务器开始赚他一个亿了。但是在这之前我们需要总结一下在开展机器学习工作前期关于数据分析的几个原则。

3.4.1 不断验证假设

验证假设是否正确是机器学习前期数据分析最重要的目的。这里的假设包括但不限于:数据的格式、变量的数量、数据是否缺失、是否有极端值、采样是否均衡等。上面这些假设,如果稍有差错,就会让在后面得到的机器学习模型无用武之地。
与此同时,我们通过数据清理得到的结果也需要经过假设验证以保证数据的完整性。最后,在实时应用中,我们往往需要考虑如下这些情况。
极端值:线下建模往往都会在第一步就过滤掉极端值,但是在实时环境中,极端值是客观存在的。
缺失值:再优秀的系统也有宕机出错的时候,这个时候缺失值的出现就要求系统具有灵活的错误处理能力。
延迟:本章练习数据的时间戳是交易所时间,还是到达客户端服务器的时间?任何网络延迟都可能让我们的模型不再有效。多问这样的问题在进行快速机器学习应用的时候显得尤为重要。

3.4.2 全面可视化,全面监控化

为了连续验证假设,我们必须自动化数据的监控和可视化。一个完备的实时机器学习系统至少需要以下两个部件。
实时关键数据可视化:通过实时面板对关键数据进行可视化,让操作人员能够一目了然地判断系统和数据的健康情况。
实时诊断监控:通过规则设定,对异常情况进行实时判断和报警。
本书的系统架构章节(第9章)将介绍如何利用 ELK(Elasticsearch、Logstash、Kibana)集群实现实时数据监控。

相关文章
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
91 2
|
28天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
74 5
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
57 2
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
构建高效数据分析系统的关键技术
【10月更文挑战第5天】构建高效数据分析系统的关键技术
44 0
|
17天前
|
机器学习/深度学习 自然语言处理 Linux
Linux 中的机器学习:Whisper——自动语音识别系统
本文介绍了先进的自动语音识别系统 Whisper 在 Linux 环境中的应用。Whisper 基于深度学习和神经网络技术,支持多语言识别,具有高准确性和实时处理能力。文章详细讲解了在 Linux 中安装、配置和使用 Whisper 的步骤,以及其在语音助手、语音识别软件等领域的应用场景。
47 5
|
1月前
|
SQL 存储 数据挖掘
快速入门:利用AnalyticDB构建实时数据分析平台
【10月更文挑战第22天】在大数据时代,实时数据分析成为了企业和开发者们关注的焦点。传统的数据仓库和分析工具往往无法满足实时性要求,而AnalyticDB(ADB)作为阿里巴巴推出的一款实时数据仓库服务,凭借其强大的实时处理能力和易用性,成为了众多企业的首选。作为一名数据分析师,我将在本文中分享如何快速入门AnalyticDB,帮助初学者在短时间内掌握使用AnalyticDB进行简单数据分析的能力。
40 2
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
44 2
|
2月前
|
机器学习/深度学习 API 计算机视觉
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(下)
27 2
|
2月前
|
机器学习/深度学习 存储 算法
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
基于Python_opencv人脸录入、识别系统(应用dlib机器学习库)(上)
33 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
从零到精通:Scikit-learn在手,数据分析与机器学习模型评估不再难!
【10月更文挑战第4天】在数据科学领域,模型评估是连接理论与实践的桥梁,帮助我们理解模型在未知数据上的表现。对于初学者而言,众多评估指标和工具常令人困惑。幸运的是,Scikit-learn 这一强大的 Python 库使模型评估变得简单。本文通过问答形式,带你逐步掌握 Scikit-learn 的评估技巧。Scikit-learn 提供了丰富的工具,如交叉验证、评分函数(准确率、精确率、召回率、F1 分数)、混淆矩阵和 ROC 曲线等。
42 1
下一篇
无影云桌面