大数据让分析软件市场大规模扩展

简介:

ZDNET至顶网CIO与应用频道 04月08日 综合消息:大数据产品供应商开始表现出对Hadoop分布式文件系统等技术的浓厚兴趣。到2016年,如果这一趋势得以保持的话,可能会引发分析软件市场的急剧膨胀。

目前,业界对于大数据的话题已经谈论得非常多了。而根据IDC的预测,商业分析软件市场将以9.8%的年复合增长率在2016年达到507亿美元。

那么,究竟是什么力量推动着商业分析软件2011年销售量增长了14.1%?想必这一定与业界对大数据概念的热烈讨论以及厂商的大肆宣传有着密切的联系。大数据对于企业发展的影响力,已经成为企业高级管理人员无法忽视的问题。因此,商业分析将是企业最需要优先考虑的。

另一个发生变化的情况是,商业分析软件供应商不得不进一步扩大其研究和开发工作的投入及规模,以此为非结构化数据相关技术比如Hadoop做好准备。

总而言之,在大数据方面未来几年企业一定会有更多的开支,同时厂商也一定会推出新的产品以供用户随时按需使用。从大数据软件分类的角度分别来看,2011年数据仓库与存储软件的销售收入比上一年提高了15.2%,而分析软件与商业智能软件则都达到了13%以上的增长率。

数据表明,企业对于云计算及SaaS的选择正在降低分析平台实际组件的重要性。简单地说,供应商们必须要将他们的核心力量集中投入到对商业价值的挖掘工作中。

原文发布时间为: 2014年04月08日
本文作者:刘羽飞
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
简单用户画像分析
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
13天前
|
API
GEE案例分析——利用sentinel-3数据计算空气污染指数(Air Pollution Index,简称API)
GEE案例分析——利用sentinel-3数据计算空气污染指数(Air Pollution Index,简称API)
15 0
|
19天前
|
SQL 数据可视化 数据建模
大数据分析利器之Power BI,你是否已经掌握?
大数据分析利器之Power BI,你是否已经掌握?
17 0
|
20天前
|
分布式计算 大数据 Java
Spark 大数据实战:基于 RDD 的大数据处理分析
Spark 大数据实战:基于 RDD 的大数据处理分析
51 0
|
22天前
|
数据挖掘
离线大数据分析的应用
离线大数据分析的应用
|
22天前
|
关系型数据库 MySQL Serverless
高顿教育:大数据抽数分析业务引入polardb mysql serverless
高顿教育通过使用polardb serverless形态进行数据汇总,然后统一进行数据同步到数仓,业务有明显高低峰期,灵活的弹性伸缩能力,大大降低了客户使用成本。
|
24天前
|
机器学习/深度学习 数据采集 算法
大数据分析技术与方法探究
在当今信息化时代,数据量的增长速度远快于人类的处理能力。因此,如何高效地利用大数据,成为了企业和机构关注的焦点。本文将从大数据分析的技术和方法两个方面进行探究,为各行业提供更好的数据应用方向。
|
24天前
|
机器学习/深度学习 存储 人工智能
大数据处理与分析技术:未来的基石
在信息化时代,数据已成为企业发展和决策的基础。而随着数据量的不断增长,传统的数据处理方法已经无法满足现代企业的需求。因此,大数据处理与分析技术的出现成为了新时代的必需品。本文将介绍大数据处理与分析技术的概念,意义、应用场景以及未来发展趋势。
24 3
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
大数据分析的技术和方法:从深度学习到机器学习
大数据时代的到来,让数据分析成为了企业和组织中不可或缺的一环。如何高效地处理庞大的数据集并且从中发现潜在的价值是每个数据分析师都需要掌握的技能。本文将介绍大数据分析的技术和方法,包括深度学习、机器学习、数据挖掘等方面的应用,以及如何通过这些技术和方法来解决实际问题。
17 2
|
28天前
|
机器学习/深度学习 人工智能 运维
大数据分析:探索信息世界的钥匙
在当今信息爆炸的时代,大数据分析成为挖掘宝藏般的技术和方法。本文将介绍大数据分析的基本概念、技术与方法,并探讨其在商业、科学和社会领域中的广泛应用。从数据收集和预处理到模型构建和结果解读,大数据分析为我们揭示了信息世界的钥匙,为决策者提供了有力的支持。
|
29天前
|
算法 数据可视化 大数据
大数据分析的技术和方法——探究现代数据处理的未来方向
在当今信息化时代,海量数据已经成为企业和组织的重要资源。大数据分析技术的出现为数据处理提供了更高效、更准确的解决方案。本文将深入探讨大数据分析技术和方法,分析其优势和应用场景,以及未来发展方向。