HBase – 存储文件HFile结构解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

HFile是HBase存储数据的文件组织形式,参考BigTable的SSTable和Hadoop的TFile实现。从HBase开始到现在,HFile经历了三个版本,其中V2在0.92引入,V3在0.98引入。HFileV1版本的在实际使用过程中发现它占用内存多,HFile V2版本针对此进行了优化,HFile V3版本基本和V2版本相同,只是在cell层面添加了Tag数组的支持。鉴于此,本文主要针对V2版本进行分析,对V1和V3版本感兴趣的同学可以参考其他信息。

HFile逻辑结构

HFile V2的逻辑结构如下图所示:

1

文件主要分为四个部分:Scanned block section,Non-scanned block section,Opening-time data section和Trailer。

Scanned block section:顾名思义,表示顺序扫描HFile时所有的数据块将会被读取,包括Leaf Index Block和Bloom Block。

Non-scanned block section:表示在HFile顺序扫描的时候数据不会被读取,主要包括Meta Block和Intermediate Level Data Index Blocks两部分。

Load-on-open-section:这部分数据在HBase的region server启动时,需要加载到内存中。包括FileInfo、Bloom filter block、data block index和meta block index。

Trailer:这部分主要记录了HFile的基本信息、各个部分的偏移值和寻址信息。

HFile物理结构

2

如上图所示, HFile会被切分为多个大小相等的block块,每个block的大小可以在创建表列簇的时候通过参数blocksize => ‘65535’进行指定,默认为64k,大号的Block有利于顺序Scan,小号Block利于随机查询,因而需要权衡。而且所有block块都拥有相同的数据结构,如图左侧所示,HBase将block块抽象为一个统一的HFileBlock。HFileBlock支持两种类型,一种类型不支持checksum,一种不支持。为方便讲解,下图选用不支持checksum的HFileBlock内部结构:

3

上图所示HFileBlock主要包括两部分:BlockHeader和BlockData。其中BlockHeader主要存储block元数据,BlockData用来存储具体数据。block元数据中最核心的字段是BlockType字段,用来标示该block块的类型,HBase中定义了8种BlockType,每种BlockType对应的block都存储不同的数据内容,有的存储用户数据,有的存储索引数据,有的存储meta元数据。对于任意一种类型的HFileBlock,都拥有相同结构的BlockHeader,但是BlockData结构却不相同。下面通过一张表简单罗列最核心的几种BlockType,下文会详细针对每种BlockType进行详细的讲解:

4

HFile中Block块解析

上文从HFile的层面将文件切分成了多种类型的block,接下来针对几种重要block进行详细的介绍,因为篇幅的原因,索引相关的block不会在本文进行介绍,接下来会写一篇单独的文章对其进行分析和讲解。首先会介绍记录HFile基本信息的TrailerBlock,再介绍用户数据的实际存储块DataBlock,最后简单介绍布隆过滤器相关的block。

Trailer Block 

主要记录了HFile的基本信息、各个部分的偏移值和寻址信息,下图为Trailer内存和磁盘中的数据结构,其中只显示了部分核心字段:

5

HFile在读取的时候首先会解析Trailer Block并加载到内存,然后再进一步加载LoadOnOpen区的数据,具体步骤如下:

1. 首先加载version版本信息,HBase中version包含majorVersion和minorVersion两部分,前者决定了HFile的主版本: V1、V2 还是V3;后者在主版本确定的基础上决定是否支持一些微小修正,比如是否支持checksum等。不同的版本决定了使用不同的Reader对象对HFile进行读取解析

2. 根据Version信息获取trailer的长度(不同version的trailer长度不同),再根据trailer长度加载整个HFileTrailer Block

3. 最后加载load-on-open部分到内存中,起始偏移地址是trailer中的LoadOnOpenDataOffset字段,load-on-open部分的结束偏移量为HFile长度减去Trailer长度,load-on-open部分主要包括索引树的根节点以及FileInfo两个重要模块,FileInfo是固定长度的块,它纪录了文件的一些Meta信息,例如:AVG_KEY_LEN, AVG_VALUE_LEN, LAST_KEY, COMPARATOR, MAX_SEQ_ID_KEY等;索引树根节点放到下一篇文章进行介绍。

Data Block

DataBlock是HBase中数据存储的最小单元。DataBlock中主要存储用户的KeyValue数据(KeyValue后面一般会跟一个timestamp,图中未标出),而KeyValue结构是HBase存储的核心,每个数据都是以KeyValue结构在HBase中进行存储。KeyValue结构在内存和磁盘中可以表示为:

6

每个KeyValue都由4个部分构成,分别为key length,value length,key和value。其中key value和value length是两个固定长度的数值,而key是一个复杂的结构,首先是rowkey的长度,接着是rowkey,然后是ColumnFamily的长度,再是ColumnFamily,最后是时间戳和KeyType(keytype有四种类型,分别是Put、Delete、 DeleteColumn和DeleteFamily),value就没有那么复杂,就是一串纯粹的二进制数据。

BloomFilter Meta Block & Bloom Block

BloomFilter对于HBase的随机读性能至关重要,对于get操作以及部分scan操作可以剔除掉不会用到的HFile文件,减少实际IO次数,提高随机读性能。在此简单地介绍一下Bloom Filter的工作原理,Bloom Filter使用位数组来实现过滤,初始状态下位数组每一位都为0,如下图所示:

7

假如此时有一个集合S = {x1, x2, … xn},Bloom Filter使用k个独立的hash函数,分别将集合中的每一个元素映射到{1,…,m}的范围。对于任何一个元素,被映射到的数字作为对应的位数组的索引,该位会被置为1。比如元素x1被hash函数映射到数字8,那么位数组的第8位就会被置为1。下图中集合S只有两个元素x和y,分别被3个hash函数进行映射,映射到的位置分别为(0,2,6)和(4,7,10),对应的位会被置为1:

8

现在假如要判断另一个元素是否是在此集合中,只需要被这3个hash函数进行映射,查看对应的位置是否有0存在,如果有的话,表示此元素肯定不存在于这个集合,否则有可能存在。下图所示就表示z肯定不在集合{x,y}中:

9

HBase中每个HFile都有对应的位数组,KeyValue在写入HFile时会先经过几个hash函数的映射,映射后将对应的数组位改为1,get请求进来之后再进行hash映射,如果在对应数组位上存在0,说明该get请求查询的数据不在该HFile中。

HFile中的位数组就是上述Bloom Block中存储的值,可以想象,一个HFile文件越大,里面存储的KeyValue值越多,位数组就会相应越大。一旦太大就不适合直接加载到内存了,因此HFile V2在设计上将位数组进行了拆分,拆成了多个独立的位数组(根据Key进行拆分,一部分连续的Key使用一个位数组)。这样一个HFile中就会包含多个位数组,根据Key进行查询,首先会定位到具体的某个位数组,只需要加载此位数组到内存进行过滤即可,减少了内存开支。

在结构上每个位数组对应HFile中一个Bloom Block,为了方便根据Key定位具体需要加载哪个位数组,HFile V2又设计了对应的索引Bloom Index Block,对应的内存和逻辑结构图如下:

10

Bloom Index Block结构中totalByteSize表示位数组的bit数,numChunks表示Bloom Block的个数,hashCount表示hash函数的个数,hashType表示hash函数的类型,totalKeyCount表示bloom filter当前已经包含的key的数目,totalMaxKeys表示bloom filter当前最多包含的key的数目, Bloom Index Entry对应每一个bloom filter block的索引条目,作为索引分别指向’scanned block section’部分的Bloom Block,Bloom Block中就存储了对应的位数组。

Bloom Index Entry的结构见上图左边所示,BlockOffset表示对应Bloom Block在HFile中的偏移量,FirstKey表示对应BloomBlock的第一个Key。根据上文所说,一次get请求进来,首先会根据key在所有的索引条目中进行二分查找,查找到对应的Bloom Index Entry,就可以定位到该key对应的位数组,加载到内存进行过滤判断。

总结

这篇小文首先从宏观的层面对HFile的逻辑结构和物理存储结构进行了讲解,并且将HFile从逻辑上分解为各种类型的Block,再接着从微观的视角分别对Trailer Block、Data Block在结构上进行了解析:通过对trailer block的解析,可以获取hfile的版本以及hfile中其他几个部分的偏移量,在读取的时候可以直接通过偏移量对其进行加载;而对data block的解析可以知道用户数据在hdfs中是如何实际存储的;最后通过介绍Bloom Filter的工作原理以及相关的Block块了解HFile中Bloom Filter的存储结构。接下来会以本文为基础,再写一篇文章分析HFile中索引块的结构以及相应的索引机制。


本文转载自:http://hbasefly.com

原文链接

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
28天前
|
人工智能
歌词结构的巧妙安排:写歌词的方法与技巧解析,妙笔生词AI智能写歌词软件
歌词创作是一门艺术,关键在于巧妙的结构安排。开头需迅速吸引听众,主体部分要坚实且富有逻辑,结尾则应留下深刻印象。《妙笔生词智能写歌词软件》提供多种 AI 功能,帮助创作者找到灵感,优化歌词结构,写出打动人心的作品。
|
1月前
|
存储 Java
深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。
【10月更文挑战第16天】本文深入探讨了Java集合框架中的HashSet和TreeSet,解析了两者在元素存储上的无序与有序特性。HashSet基于哈希表实现,添加元素时根据哈希值分布,遍历时顺序不可预测;而TreeSet利用红黑树结构,按自然顺序或自定义顺序存储元素,确保遍历时有序输出。文章还提供了示例代码,帮助读者更好地理解这两种集合类型的使用场景和内部机制。
39 3
|
1月前
|
机器学习/深度学习 搜索推荐 大数据
深度解析:如何通过精妙的特征工程与创新模型结构大幅提升推荐系统中的召回率,带你一步步攻克大数据检索难题
【10月更文挑战第2天】在处理大规模数据集的推荐系统项目时,提高检索模型的召回率成为关键挑战。本文分享了通过改进特征工程(如加入用户活跃时段和物品相似度)和优化模型结构(引入注意力机制)来提升召回率的具体策略与实现代码。严格的A/B测试验证了新模型的有效性,为改善用户体验奠定了基础。这次实践加深了对特征工程与模型优化的理解,并为未来的技术探索提供了方向。
97 2
深度解析:如何通过精妙的特征工程与创新模型结构大幅提升推荐系统中的召回率,带你一步步攻克大数据检索难题
|
1月前
|
存储 监控 分布式数据库
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
本文介绍了百亿级数据存储架构的设计与实现,重点探讨了ElasticSearch和HBase的结合使用。通过ElasticSearch实现快速检索,HBase实现海量数据存储,解决了大规模数据的高效存储与查询问题。文章详细讲解了数据统一接入、元数据管理、数据一致性及平台监控等关键模块的设计思路和技术细节,帮助读者理解和掌握构建高性能数据存储系统的方法。
百亿级存储架构: ElasticSearch+HBase 海量存储架构与实现
|
20天前
|
机器学习/深度学习 自然语言处理 数据管理
GraphRAG核心组件解析:图结构与检索增强生成
【10月更文挑战第28天】在当今数据科学领域,自然语言处理(NLP)和图数据管理技术的发展日新月异。GraphRAG(Graph Retrieval-Augmented Generation)作为一种结合了图结构和检索增强生成的创新方法,已经在多个应用场景中展现出巨大的潜力。作为一名数据科学家,我对GraphRAG的核心组件进行了深入研究,并在此分享我的理解和实践经验。
42 0
|
1月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
26天前
光纤电缆(FOC)的结构深度解析
【10月更文挑战第21天】
41 0
|
2月前
|
分布式计算 Java Hadoop
java使用hbase、hadoop报错举例
java使用hbase、hadoop报错举例
94 4
|
1月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
70 4
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
33 3

推荐镜像

更多