PostgreSQL cube 插件 - 多维空间对象

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

标签

PostgreSQL , cube , GiST索引 , 多维 , 欧几里得


背景

CUBE是一个多维数据类型,支持两种多维类型:多维POINT、区间(左下+右上)。以及这些几何对象的几何特性搜索和计算(方位搜索、距离计算),这些搜索都支持GiST索引。

我们甚至可以将多个字段合并成多维POINT,实现对大量数据的高效空间聚集、空间计算。

pic

语法

External Syntax Meaning
x 点,A one-dimensional point (or, zero-length one-dimensional interval)
(x) Same as above
x1,x2,...,xn 点,A point in n-dimensional space, represented internally as a zero-volume cube
(x1,x2,...,xn) Same as above
(x),(y) 一维区间(线段)(两个括号隔开,分别表示每个维度的最小值(左括号)和最大值(右括号)),A one-dimensional interval starting at x and ending at y or vice versa; the order does not matter
[(x),(y)] Same as above
(x1,...,xn),(y1,...,yn) 多维区间(平面方形、立方体、多维CUBE)(两个括号隔开,分别表示每个维度的最小值(左括号)和最大值(右括号))An n-dimensional cube represented by a pair of its diagonally opposite corners
[(x1,...,xn),(y1,...,yn)] Same as above

操作符

Operator Result Description
a = b boolean The cubes a and b are identical.
a && b boolean The cubes a and b overlap.
a @> b boolean The cube a contains the cube b.
a <@ b boolean The cube a is contained in the cube b.
a < b boolean The cube a is less than the cube b.
a <= b boolean The cube a is less than or equal to the cube b.
a > b boolean The cube a is greater than the cube b.
a >= b boolean The cube a is greater than or equal to the cube b.
a <> b boolean The cube a is not equal to the cube b.
a -> n float8 Get n-th coordinate(坐标) of cube (counting from 1).
a ~> n float8 Get n-th coordinate in “normalized” cube representation, in which the coordinates have been rearranged into the form “lower left — upper right”; that is, the smaller endpoint along each dimension appears first.
a <-> b float8 欧几里得距离。Euclidean distance between a and b.
a <#> b float8 分别每个坐标的距离,求和。Taxicab (L-1 metric) distance between a and b.
a <=> b float8 分别每个坐标的距离,取最大值。Chebyshev (L-inf metric) distance between a and b.

函数

Function Result Description Example
cube(float8) cube Makes a one dimensional cube with both coordinates the same. cube(1) == '(1)'
cube(float8, float8) cube Makes a one dimensional cube. cube(1,2) == '(1),(2)'
cube(float8[]) cube Makes a zero-volume cube using the coordinates defined by the array. cube(ARRAY[1,2]) == '(1,2)'
cube(float8[], float8[]) cube Makes a cube with upper right and lower left coordinates as defined by the two arrays, which must be of the same length. cube(ARRAY[1,2], ARRAY[3,4]) == '(1,2),(3,4)'
cube(cube, float8) cube Makes a new cube by adding a dimension on to an existing cube, with the same values for both endpoints of the new coordinate. This is useful for building cubes piece by piece from calculated values. cube('(1,2),(3,4)'::cube, 5) == '(1,2,5),(3,4,5)'
cube(cube, float8, float8) cube Makes a new cube by adding a dimension on to an existing cube. This is useful for building cubes piece by piece from calculated values. cube('(1,2),(3,4)'::cube, 5, 6) == '(1,2,5),(3,4,6)'
cube_dim(cube) integer Returns the number of dimensions of the cube. cube_dim('(1,2),(3,4)') == '2'
cube_ll_coord(cube, integer) float8 Returns the n-th coordinate value for the lower left corner of the cube. cube_ll_coord('(1,2),(3,4)', 2) == '2'
cube_ur_coord(cube, integer) float8 Returns the n-th coordinate value for the upper right corner of the cube. cube_ur_coord('(1,2),(3,4)', 2) == '4'
cube_is_point(cube) boolean Returns true if the cube is a point, that is, the two defining corners are the same. -
cube_distance(cube, cube) float8 Returns the distance between two cubes. If both cubes are points, this is the normal distance function. -
cube_subset(cube, integer[]) cube Makes a new cube from an existing cube, using a list of dimension indexes from an array. Can be used to extract the endpoints of a single dimension, or to drop dimensions, or to reorder them as desired. cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2]) == '(3),(7)' cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1]) == '(5,3,1,1),(8,7,6,6)'
cube_union(cube, cube) cube Produces the union of two cubes. -
cube_inter(cube, cube) cube Produces the intersection of two cubes. -
cube_enlarge(c cube, r double, n integer) cube Increases the size of the cube by the specified radius r in at least n dimensions. If the radius is negative the cube is shrunk instead. All defined dimensions are changed by the radius r. Lower-left coordinates are decreased by r and upper-right coordinates are increased by r. If a lower-left coordinate is increased to more than the corresponding upper-right coordinate (this can only happen when r < 0) than both coordinates are set to their average. If n is greater than the number of defined dimensions and the cube is being enlarged (r > 0), then extra dimensions are added to make n altogether; 0 is used as the initial value for the extra coordinates. This function is useful for creating bounding boxes around a point for searching for nearby points. cube_enlarge('(1,2),(3,4)', 0.5, 3) == '(0.5,1.5,-0.5),(3.5,4.5,0.5)'

例子

1、向量聚合(类似多维聚集)

https://github.com/umitanuki/kmeans-postgresql

2、4维(包含)的聚集分析

http://postgis.net/docs/manual-2.3/ST_ClusterKMeans.html

3、求多维点的距离

欧几里得距离。  
  
postgres=# select '(1,2,3,4)'::cube <-> '(2,2,3,10)'::cube ;  
     ?column?       
------------------  
 6.08276253029822  
(1 row)  
  
分别每个坐标的距离,取最大值。  
  
postgres=# select '(1,2,3,4)'::cube <=> '(2,2,3,10)'::cube ;  
 ?column?   
----------  
        6  
(1 row)  
  
分别每个坐标的距离,求和。  
  
postgres=# select '(1,2,3,4)'::cube <#> '(2,2,3,10)'::cube ;  
 ?column?   
----------  
        7  
(1 row)  

4、按距离排序,输出附近的多维点。

SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;  

5、假设某个表有多个数值类型字段,基于这几个字段构建CUBE,创建gist表达式索引。将来可以根据这个按距离高速检索附近的多维点(记录)。

postgres=# create index idx on tbl_tmp using gist (cube(array[c1,c3,c4,c5]));  

6、针对以上索引,我们可以对数据进行聚集存储,实现高效过滤。

create table tbl(c1 int, c2 int, c3 numeric, c4 float4, c5 int, c6 int);

insert into tbl select random()*1000, random()*1000000, random()*100000000, random()*100000, random()*1000000, random()*100 from generate_series(1,10000000);

create index idx_tbl_1 on tbl using gist(cube(array[c1::float8,c2::float8,c3::float8,c4::float8,c5::float8,c6::float8]));

create index idx_tbl_2 on tbl using brin(c1,c2,c3,c4,c5,c6);

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c5 between 1 and 10  and c4 between 1 and 5;
                                                             QUERY PLAN                                                             
------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on public.tbl  (cost=8.51..218370.51 rows=1 width=31) (actual time=596.689..596.689 rows=0 loops=1)
   Output: c1, c2, c3, c4, c5, c6
   Recheck Cond: ((tbl.c4 >= '1'::double precision) AND (tbl.c4 <= '5'::double precision) AND (tbl.c5 >= 1) AND (tbl.c5 <= 10))
   Rows Removed by Index Recheck: 4980743
   Heap Blocks: lossy=9146
   Buffers: shared hit=9152
   ->  Bitmap Index Scan on idx_tbl_2  (cost=0.00..8.51 rows=10000000 width=0) (actual time=0.229..0.229 rows=92160 loops=1)
         Index Cond: ((tbl.c4 >= '1'::double precision) AND (tbl.c4 <= '5'::double precision) AND (tbl.c5 >= 1) AND (tbl.c5 <= 10))
         Buffers: shared hit=6
 Planning time: 0.126 ms
 Execution time: 596.727 ms
(11 rows)
  
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c5 between 1 and 10  and c6 between 1 and 5;
                                                         QUERY PLAN                                                         
----------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on public.tbl  (cost=6.25..120154.09 rows=1 width=31) (actual time=106.353..609.540 rows=2 loops=1)
   Output: c1, c2, c3, c4, c5, c6
   Recheck Cond: ((tbl.c5 >= 1) AND (tbl.c5 <= 10) AND (tbl.c6 >= 1) AND (tbl.c6 <= 5))
   Rows Removed by Index Recheck: 5399033
   Heap Blocks: lossy=9914
   Buffers: shared hit=9916
   ->  Bitmap Index Scan on idx_tbl_2  (cost=0.00..6.25 rows=5089292 width=0) (actual time=0.207..0.207 rows=99840 loops=1)
         Index Cond: ((tbl.c5 >= 1) AND (tbl.c5 <= 10) AND (tbl.c6 >= 1) AND (tbl.c6 <= 5))
         Buffers: shared hit=2
 Planning time: 0.113 ms
 Execution time: 609.588 ms
(11 rows)

设置聚集存储

postgres=# cluster tbl USING idx_tbl_1;

聚集后的效果

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c5 between 1 and 10  and c4 between 1 and 5;
                                                             QUERY PLAN                                                             
------------------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on public.tbl  (cost=8.51..218375.51 rows=1 width=31) (actual time=219.648..219.648 rows=0 loops=1)
   Output: c1, c2, c3, c4, c5, c6
   Recheck Cond: ((tbl.c4 >= '1'::double precision) AND (tbl.c4 <= '5'::double precision) AND (tbl.c5 >= 1) AND (tbl.c5 <= 10))
   Rows Removed by Index Recheck: 1881220
   Heap Blocks: lossy=3456
   Buffers: shared hit=3458
   ->  Bitmap Index Scan on idx_tbl_2  (cost=0.00..8.51 rows=10000000 width=0) (actual time=0.133..0.133 rows=34560 loops=1)
         Index Cond: ((tbl.c4 >= '1'::double precision) AND (tbl.c4 <= '5'::double precision) AND (tbl.c5 >= 1) AND (tbl.c5 <= 10))
         Buffers: shared hit=2
 Planning time: 0.134 ms
 Execution time: 219.685 ms
(11 rows)

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c5 between 1 and 10  and c6 between 1 and 5;
                                                         QUERY PLAN                                                         
----------------------------------------------------------------------------------------------------------------------------
 Bitmap Heap Scan on public.tbl  (cost=6.25..120159.09 rows=1 width=31) (actual time=43.253..315.421 rows=2 loops=1)
   Output: c1, c2, c3, c4, c5, c6
   Recheck Cond: ((tbl.c5 >= 1) AND (tbl.c5 <= 10) AND (tbl.c6 >= 1) AND (tbl.c6 <= 5))
   Rows Removed by Index Recheck: 2857135
   Heap Blocks: lossy=5248
   Buffers: shared hit=5250
   ->  Bitmap Index Scan on idx_tbl_2  (cost=0.00..6.25 rows=5089292 width=0) (actual time=0.147..0.147 rows=52480 loops=1)
         Index Cond: ((tbl.c5 >= 1) AND (tbl.c5 <= 10) AND (tbl.c6 >= 1) AND (tbl.c6 <= 5))
         Buffers: shared hit=2
 Planning time: 0.111 ms
 Execution time: 315.462 ms
(11 rows)

参考

https://www.postgresql.org/docs/10/static/cube.html

http://postgis.net/docs/manual-2.3/ST_ClusterKMeans.html

https://github.com/umitanuki/kmeans-postgresql

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
4月前
|
SQL 关系型数据库 数据库
手把手教你管理PostgreSQL数据库及其对象
手把手教你管理PostgreSQL数据库及其对象
95 0
|
7月前
|
人工智能 自然语言处理 关系型数据库
|
6月前
|
XML 关系型数据库 数据库
使用mybatis-generator插件生成postgresql数据库model、mapper、xml
使用mybatis-generator插件生成postgresql数据库model、mapper、xml
599 0
|
7月前
|
SQL JSON 关系型数据库
[UE虚幻引擎插件DTPostgreSQL] PostgreSQL Connector 使用蓝图连接操作 PostgreSQL 数据库说明
本插件主要是支持在UE蓝图中连接和操作PostgreSQL 数据库。
67 2
|
存储 NoSQL 关系型数据库
深入探索地理空间查询:如何优雅地在MySQL、PostgreSQL及Redis中实现精准的地理数据存储与检索技巧
深入探索地理空间查询:如何优雅地在MySQL、PostgreSQL及Redis中实现精准的地理数据存储与检索技巧
2183 0
|
SQL 关系型数据库 Go
《增强你的PostgreSQL:最佳扩展和插件推荐》
《增强你的PostgreSQL:最佳扩展和插件推荐》
991 0
|
7月前
|
分布式计算 关系型数据库 大数据
MaxCompute产品使用合集之怎么才可以将 PostgreSQL 中的 geometry 空间类型字段同步到 MaxCompute 或另一个 PostgreSQL 数据库
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
7月前
|
关系型数据库 数据库 PostgreSQL
Docker【应用 03】给Docker部署的PostgreSQL数据库安装PostGIS插件(安装流程及问题说明)
Docker【应用 03】给Docker部署的PostgreSQL数据库安装PostGIS插件(安装流程及问题说明)
436 0
|
7月前
|
关系型数据库 数据库 PostgreSQL
PostgreSQL【应用 01】使用Vector插件实现向量相似度查询(Docker部署的PostgreSQL安装pgvector插件说明)和Milvus向量库对比
PostgreSQL【应用 01】使用Vector插件实现向量相似度查询(Docker部署的PostgreSQL安装pgvector插件说明)和Milvus向量库对比
642 1
|
7月前
|
SQL 监控 关系型数据库
postgresql|数据库|插件学习(二)---postgresql-12的外置插件pg_profile的启用和使用
postgresql|数据库|插件学习(二)---postgresql-12的外置插件pg_profile的启用和使用
231 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版