教育研究如何跟上大数据时代

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

如何能有效地将巨量的数据资源转化为丰硕的教育研究成果,应用于改善教育的决策与实践,对教育研究界来说意义重大。而要实现这个目标,需要完成将数据资源转化为生产要素、合理搭配生产要素、高效完成研究生产、产品的转化与传播四个步骤。

教育研究如何跟上大数据时代

第一步,资源转化为生产要素。

大数据被喻为“第三次浪潮”,其价值已得到商业领域的充分证实。然而,如何把沉睡的数据资源变成具有增值性的生产要素,是教育研究生产的预备步骤。

首 先,作为生产要素的数据应具有明晰的价值性。大数据记录的既包括研究对象的实在行为,也包括他们的主观选择,显示了人们应然和实然的表现,且不再拘泥于以 往的抽样方式,因为样本=全部。然而在大数据具有先天信效度优势的同时,还伴生着劣势,即数据虽具价值,但单位时间价值的含量可能有所不同。如两个小时的 监控录像中也许有用的信息仅2-3秒。此刻,需要研究人员对问题进行明确的界定,并列明清晰、可计算的筛选标准,用以提取该研究需要的有价值数据,而其余 的数据“尾矿”,应留存给其他研究者或相关部门挖掘。

其次,作为生产要素的数据可以被标准化。大数据时代要提高对混杂、无序数据的接纳程度,但这种接纳却是研究的大忌。中国人民大学应 用统计科学中心主任赵彦云就曾表明,“指标不一致、指标口径不一致、时间不一致、空间不一致、指标体系不一致、分类不一致、编码不一致等,如此杂乱的数据 库,基本上连常规的统计整理、统计描述和分析都无法做到。”研究者能做且该做的是,把非结构化信息进行一定标准化处理,将其变成可用于分析的数据,依此来 建模并寻找因果关系。

再次,作为生产要素的数据应具有安全性。如各类骚扰短信和电话推荐教育信息让人不胜其烦,各国也多次出现叫停儿童发展数据的相关计划。那么用技术(如匿名化)与立法双重保护信息安全是数据用于研究的前提。

第二步,合理搭配生产要素。

期望在高等教育研究当中使用大数据,单纯投入数据显然是不够的,还需要匹配人力、物力和财力。

一 方面,大数据时代最缺乏两类人才:数据科学家和跨学科的学者。大数据的优势在于数据科学家能用不同的算法呈现不同事物之间的相关联系——而这些事物往往不 是同一领域或是直接符合我们主观预期的。新一代的教育研究学人需与数据科学家和其他学科专家合作,抑或是自己及时补充此类知识,以便于继续有说服力的探寻 教育相关事务的因果联系,丰富人类的教育认知。

另一方面,大数据的运用需要硬件设施的匹配。云计算为存储和利用大数据提供了便利,却仍旧需要对维护与储存的平台系统进行支持。这部分器材造价不菲,且对环境也有一定要求,对巨量的教育数据搜集需要对应的财政投入保障。

第三步,高效完成研究生产。

一方面,研究应体现效率理念。在大数据的背景下,时间性显得格外重要——数据随时随地更新,科研数据的精度可更高,而延误的信息可能毫无价值。

另一方面,研究应呈现更准确的因果关系。大数据为我们展现了多种类型的相关关系,而研究者的责任在于从巨量的资料中挖掘更贴合实际、有说服力和实效的因果关系,厘清其间可能出现的干扰因素,让教育服务变得更精确,更符合个人发展需求。

此外,研究产生的应是更亲民的成品。所谓亲民,是指产品能用更鲜活、通俗、便捷的方式来提供,且产品本身更符合消费者的个人需求。大数据的优势就在于其可以充分地捕捉微观个体特征来进行分析,实现所谓的互动和可视化服务。未来的研究理应是服务友好型,而不再是板着脸说理论。

第四步,产品的转化与传播。

大数据时代不仅为研究者丰富了研究数据与题材,还为研究成果的转化与传播带来了便利。大数据让科研(知识产品)生产更具科学性,它使实践者在先验中成长,使决策者在自信中完善,不仅拓展了教育服务的机会,也改善了教育服务的质量。

但 在不断肯定大数据改变我们的研究范式之时,我们也需要提前思考一些问题:大数据的实时更新、动态分析对整体形势的判断是否足够准确?会不会形成依赖而低估 经验的价值?会不会消磨我们的创新力?我们的“学习自由”和“研究自由”被机器左右甚至决定?大数据的占据是否会引发新的社会不均等——固化甚至加深贫富 差距?在数据处理技术差异大的情况下,大数据的公开是否可能危及国家安全?而到大数据发展到极致之时,大家的决策均享有并依据数据而行,这种动态的判别方 式是否可能消解彼此的数据优势,而最终达到新的“数据对冲均衡”,到那时想取得先机还得回归经验。


本文作者:佚名

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7月前
|
关系型数据库 MySQL Serverless
高顿教育:大数据抽数分析业务引入polardb mysql serverless
高顿教育通过使用polardb serverless形态进行数据汇总,然后统一进行数据同步到数仓,业务有明显高低峰期,灵活的弹性伸缩能力,大大降低了客户使用成本。
|
1月前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
3月前
|
人工智能 分布式计算 大数据
超级计算与大数据:推动科学研究的发展
【9月更文挑战第30天】在信息时代,超级计算和大数据技术正成为推动科学研究的关键力量。超级计算凭借强大的计算能力,在尖端科研、国防军工等领域发挥重要作用;大数据技术则提供高效的数据处理工具,促进跨学科合作与创新。两者融合不仅提升了数据处理效率,还推动了人工智能、生物科学等领域的快速发展。未来,随着技术进步和跨学科合作的加深,超级计算与大数据将在科学研究中扮演更加重要的角色。
|
4月前
|
存储 数据可视化 数据挖掘
大数据环境下的房地产数据分析与预测研究的设计与实现
本文介绍了一个基于Python大数据环境下的昆明房地产市场分析与预测系统,通过数据采集、清洗、分析、机器学习建模和数据可视化技术,为房地产行业提供决策支持和市场洞察,探讨了模型的可行性、功能需求、数据库设计及实现过程,并展望了未来研究方向。
241 4
大数据环境下的房地产数据分析与预测研究的设计与实现
|
4月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
102 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
4月前
|
机器学习/深度学习 自然语言处理 数据可视化
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
本文探讨了基于Python大数据技术对京东产品评论进行情感分析的研究,涵盖了文本预处理、情感分类、主题建模等步骤,并运用了snwonlp情感分析和LDA主题分析方法,旨在帮助电商企业和消费者做出更明智的决策。
175 1
基于Python大数据的京东产品评论的情感分析的研究,包括snwonlp情感分析和LDA主题分析
|
4月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
84 2
|
6月前
|
数据采集 搜索推荐 大数据
基于大数据的市场分析与消费者行为研究
【6月更文挑战第5天】大数据在市场分析与消费者行为研究中扮演关键角色。通过海量数据分析,企业能更全面、精准地了解消费者偏好和市场趋势。Python等工具帮助处理数据,揭示购买习惯,支持个性化营销策略。同时,大数据使深入理解消费者心理、决策过程成为可能,助力企业优化产品,提升客户满意度和忠诚度。在这个数据驱动的时代,大数据是洞悉市场和消费者的魔法力量。
232 2
|
7月前
|
SQL 分布式计算 Hadoop
[AIGC ~大数据] 深入理解Hadoop、HDFS、Hive和Spark:Java大师的大数据研究之旅
[AIGC ~大数据] 深入理解Hadoop、HDFS、Hive和Spark:Java大师的大数据研究之旅
195 0
|
7月前
|
搜索推荐 大数据
大数据在教育领域的应用有哪些?请举例说明。
大数据在教育领域的应用有哪些?请举例说明。
169 0