以大数据技术引领 强化银行风险管控和不良资产处置

简介:

在智慧科技产业飞速发展的当下,以大数据技术为依托的若干大数据产品在金融领域逐渐开拓出广阔的运用空间。特别是在控制银行风险和降低不良资产领域,目前已经有了较为成熟的实践。事实上,不良贷款的产生除了受近年来国内外经济大环境影响外,还与现有的征信体系和银行传统的征信方式不适应现代经济发展的实际情况有关,而大数据正是解决这一难题的有力工具。

我国征信体系建设起步于1992年,但现有征信体系覆盖范围仍很有限。个人征信系统中反映的仅是个人或企业与银行间发生的信用情况,企业与企业间的商业信用关系以及个人与多方面的信用关系并没有得到系统的记录与反映。

与此同时,银行传统的征信方式也无法满足现代经济发展的实际情况。现代经济发展使企业和个人的经济活动发生了巨大变化,涉及范围更大、内容更加丰富,因此,衡量信用的维度更多样。银行仅仅依靠财务报表已无法了解企业的真实情况,而权威机构的公开信息系统还无法涵盖有关企业及个人社会行为的所有信用信息。这些不足导致现有银行的征信系统对客户了解的信息维度不够,信息真实性不高,信息采集、分类的科学性不强,进而使银行无法准确地对客户的诚信作出判断,对客户经营活动无从掌握,对客户的未来发展无法预测。

大数据技术手段的应用,为现有征信体系建设提供了很好的补充和强化作用。当前一些企业所做的尝试表明,大数据可以帮助银行提高征信水平和风险监控能力。

首先,一站式征信平台可以进行贷前客户甄别。目前,银行查询客户的情况既费时、费力,又增加银行费用,而利用企业的一站式征信平台,则可以最大限度地节省银行的人力、物力及时间,并确保数据有效、及时、准确。

其次,风险量化平台可以助力贷后风险监控。平台基于企业日常经营数据,结合平台数据模型,采用动态、实时的云端数据抓取技术,对企业的发展进行分析和评测,给出风险量化分数,并第一时间发现企业的生产经营异动,在风险触发前3到6个月预警,使银行等金融机构能够及时采取相应措施,防止和减少损失发生。

同时,利用“企业族谱”查询,对不良贷款进行监控。如一些企业通过关联交易转移利润、制造亏损的假象,为不偿还银行贷款寻找理由;或者通过关联交易制造虚假业绩,为继续获得银行贷款提供依据,这些假象通过关联交易查询,都可以很快发现蛛丝马迹,让企业造假暴露原形,可防止银行上当受骗。

值得一提的是,大数据技术将有效解决中小微企业融资难题。银行发展中小微企业客户既是国家的要求,也是银行自身改善客户结构的需要。但是,有融资需求的中小微企业普遍存在资产少、担保不足的问题。运用金电联行的工具,在企业提供反映其真实经营状况的历史数据的基础上,通过大数据挖掘和分析技术,可挖掘出企业真实的经营状况、健康状况、盈利能力及企业历史信用积累情况,真正展现出企业实际经营信息,并给出企业的信用等级和信用额度,从而为银行或相关金融机构提供贷款依据,缓解中小微企业融资难题,挖掘潜在优质客户。

除此之外,还可以提高信用卡发卡质量,合理增信,防止不良客户产生。大数据企业有多项独特的个人外部数据来源和评分系统来协助银行进行信用卡新卡发卡审批、审批额度、增信、交易监控等业务管理环节。

金融的本质是经营风险,如何做好风控尤为重要。特别是在当前经济新常态下,中小企业承受着不同程度的压力,银行风险开始涌现。在此背景下,金融机构如何对已贷款客户进行有效的风险度量,无疑是迫切的现实需求。由此,提前抑制风险就成为银行利用大数据技术所要实现的首要目标。

某股份制银行董事长曾谈到量化风险管理给银行带来的三大收获:“一是至少可以比其他银行跑得快一点儿;二是实现了最大限度的信息对称;三是效率与准确度大幅度提升,摆脱大量人工之后,有利于将贷后风险管理上收总行及分行,大幅提升管理透明度。”而据某商业银行测算,大数据技术能有效降低不良率47%以上。

由于大数据技术在某种程度上相当于给中小微企业加了一套体检设备,这样筛查出来的好企业,银行就敢于放贷,从而很好地解决了融资难的问题。此外,通过大数据技术催生新的金融服务模式,实现了全线上的流程再造。即将传统的人工点对点模式升级为智能、批量的高效模式,可以最大程度地降低成本,助推金融机构转型发展。

特别是,针对以往基层银行客户多、人员少,无法做到实时监控,难以及时发现风险的状况,大数据产品的运用,则可以帮助银行做到风险监控实时化、动态化,从而避免和减少损失。


本文作者:谭兴民

来源:51CTO

相关实践学习
简单用户画像分析
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
20天前
|
Cloud Native 数据处理 云计算
探索云原生技术在大数据分析中的应用
随着云计算技术的不断发展,云原生架构作为一种全新的软件开发和部署模式,正逐渐引起企业的广泛关注。本文将探讨云原生技术在大数据分析领域的应用,介绍其优势与挑战,并探讨如何利用云原生技术提升大数据分析的效率和可靠性。
|
3月前
|
数据采集 传感器 人工智能
大数据关键技术之电商API接口接入数据采集发展趋势
本文从数据采集场景、数据采集系统、数据采集技术方面阐述数据采集的发展趋势。 01 数据采集场景的发展趋势 作为大数据和人工智能工程的源头,数据采集的场景伴随着应用场景的发展而变化,以下是数据采集场景的发展趋势。
|
3月前
|
数据采集 搜索推荐 大数据
大数据技术在电商平台中的应用
电商平台是当今社会最为普及的购物方式之一,而大数据技术则成为了众多企业的强有力竞争力。本文将介绍大数据技术在电商平台中的应用,包括数据采集、预测分析、用户画像等方面,并探讨其对电商平台的价值和意义。
|
3月前
|
机器学习/深度学习 数据采集 算法
大数据分析技术与方法探究
在当今信息化时代,数据量的增长速度远快于人类的处理能力。因此,如何高效地利用大数据,成为了企业和机构关注的焦点。本文将从大数据分析的技术和方法两个方面进行探究,为各行业提供更好的数据应用方向。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据分析的技术和方法:从深度学习到机器学习
大数据时代的到来,让数据分析成为了企业和组织中不可或缺的一环。如何高效地处理庞大的数据集并且从中发现潜在的价值是每个数据分析师都需要掌握的技能。本文将介绍大数据分析的技术和方法,包括深度学习、机器学习、数据挖掘等方面的应用,以及如何通过这些技术和方法来解决实际问题。
44 2
|
3月前
|
机器学习/深度学习 存储 人工智能
大数据处理与分析技术:未来的基石
在信息化时代,数据已成为企业发展和决策的基础。而随着数据量的不断增长,传统的数据处理方法已经无法满足现代企业的需求。因此,大数据处理与分析技术的出现成为了新时代的必需品。本文将介绍大数据处理与分析技术的概念,意义、应用场景以及未来发展趋势。
46 3
|
10天前
|
NoSQL 大数据 数据挖掘
现代数据库技术与大数据应用
随着信息时代的到来,数据量呈指数级增长,对数据库技术提出了前所未有的挑战。本文将介绍现代数据库技术在处理大数据应用中的重要性,并探讨了一些流行的数据库解决方案及其在实际应用中的优势。
|
15天前
|
机器学习/深度学习 人工智能 数据可视化
基于Python的数据可视化技术在大数据分析中的应用
传统的大数据分析往往注重数据处理和计算,然而数据可视化作为一种重要的技术手段,在大数据分析中扮演着至关重要的角色。本文将介绍如何利用Python语言中丰富的数据可视化工具,结合大数据分析,实现更直观、高效的数据展示与分析。
|
22天前
|
存储 NoSQL 大数据
新型数据库技术在大数据分析中的应用与优势探究
随着大数据时代的到来,传统数据库技术已经无法满足海量数据处理的需求。本文将探讨新型数据库技术在大数据分析中的应用情况及其所带来的优势,为读者解析数据库领域的最新发展趋势。
|
23天前
|
存储 分布式计算 大数据
现代化数据库技术——面向大数据的分布式存储系统
传统的关系型数据库在面对大规模数据处理时遇到了诸多挑战,而面向大数据的分布式存储系统应运而生。本文将深入探讨现代化数据库技术中的分布式存储系统,包括其优势、工作原理以及在大数据领域的应用。

热门文章

最新文章