如何将枯燥的大数据呈现为可视化的图和动画?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

前段时间做了一个关于诺贝尔人才流动的题,包含了可视化视频和信息图,所以用这个选题,来分享一些制作过程以及工具使用,希望能够帮助到题主和其他和对这方面感兴趣的知友。

主题:诺贝尔获奖者的流动

我们想表现的就是诺贝尔获奖者出生地与获奖时的居住地的变化,所以想到流线地图的方式,用地图直观的看到某些时间段内人才流动的变化。

数据:如何收集这个数据?

对于这个案例,毫无疑问的数据来源是诺贝尔奖的官网,上面有最详细的获奖者信息。

对于其他的选题,首选与主题相关的权威官网。

我们用Import.io工具抓了871条关于诺贝尔奖历年来的获奖者信息。

因为最终效果要在地图上呈现,在源数据的基础上,表格里还加入了国家的地理坐标,方便下一步的软件操作。

工具:这是用什么做的?

最终视频=Processing+Ocam+Adobe Premiere+Adobe effect

一个正经的小视频居然还用到这么多工具?!

那我们用这些工具分别干了什么?

① Processing

本次视频的流线地图效果的重要支持软件!!

我们的编辑写了298行代码,去表现诺奖人才流动的变化。

其实Processing也可以直接导出每一帧图片,但为了更好地和AE对接,所以选择了录屏软件,灵活性更大。

下面是编辑有话要说:

1.Processing是具有设计背景的团队,为脑回路完全不一样的设计师们或者代码苦手等麻瓜(喂)人群打造的交互编程语言,上手容易,逻辑就跟使用AI一样,特别顺畅(….至少刚开始是这样啊喂!)。

2. 对从没接触过编程的人来说,Processing会是个好开始,不光是学习Processing,你可以通过学习Processing接触何为编程,理解编程的逻辑,进而接触其他编程语言,这也是Processing创始人的初衷之一。

3.气质不一样。恩这点有些玄乎…我把这归结为因为Processing没有封装一些常用的数据可视化形式,导致能发挥的自由度更高,形式更奇葩多样,可以丑到没下限,也可以很美。设计师背景也会让气质不一样,类似同样由设计师背景团队打造的raw,是DesityDesign实验室的产品,你只要打开DensityDesign的主页可能就明白为什么我说气质不一样..大概。

当然无论是Processing还是d3.js,chart.js…或是AI,都只是工具而已,能用到什么程度,还是看使用它的人。数据可视化并不是Processing的核心,Processing可以被叫做创意编程语言,那种感觉就好像它已经从设计师跳脱到艺术家了……很多艺术家都使用processing创造自己的作品。甩个接地气的例子,日本女子组合Perfume有个国际推广的项目perfume global website,她们几场看起来各种酷炫的黑科技演唱会都有Processing的一份功劳哦。

废话一不小心就这么多,重要的是,你还不和我一起跳入processing的大坑啊呸知识的海洋么!

②Ocam

一款录屏软件,用它来录制我们的小视频。

③Adobe Effect和Adobe Premiere

用于录制视频的剪辑合成和其他效果的添加。

除了视频,我们还做了两张气质不一样的信息图,就是我们的编辑推荐的RAW。

RAW是基于D3.js的开源工具,不用代码,只需要导入数据,设置一些条件就可快速生成,而且可以导出矢量的图表!

第一步:导入数据

复制excel表里的数据到Raw里,

第二步:选择图表模式

以环形信息图做案例,我们选择Circular Dondrogram。

第三步:选择条件生成效果图

拖拽左边的条件到右边呈现的项目,右边的排序会影响最后生成的结构,生成的效果也会根据你的词条实时更新。

嗯,感觉有了,但作为一名美数课代表。这效果怎么可以直接发送给我可爱的班主任?

所以先丢给AI,丢给神奇的AI。(噢,这里AI泛指Adobe Illustrator,不是Artificial Intelligence)

第四步:导出svg,AI中修改,发给班主任,交稿,下班。

有什么技巧?

数据可视化的方式和工具有很多:

有人说,“可视化的很多工具都是一个大坑。”

本课代表否认,“这哪是坑,明明是黑洞!!!洞!!”

Anyway,掌握你所需,然后不断的练习,用合适的方式清楚地表达准确的信息。


本文作者:美数课

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7月前
|
数据采集 SQL 数据可视化
大数据可视化技巧:借助PowerBI提升数据故事讲述力
【4月更文挑战第8天】Power BI助力大数据可视化,支持多种数据源连接,如SQL Server、Excel,提供数据清洗与转换功能。通过选择合适图表类型、运用颜色和大小强化表达,创建交互式仪表板。讲述数据故事时,注重故事主线设计,利用叙事技巧引导观众,并添加文本说明。分享已完成报告,提升数据驱动决策能力。动手实践,体验Power BI的强大与易用。
212 0
|
7月前
|
SQL 分布式计算 数据可视化
Tableau与大数据:可视化工具在大数据分析中的应用
【4月更文挑战第8天】Tableau是一款领先的数据可视化工具,擅长于大数据分析,提供广泛的数据连接器,支持多源整合。它与Hadoop、Spark等深度集成,实现高效大数据处理。Tableau的拖拽式界面和交互式分析功能使得非技术人员也能轻松探索数据。在实战中,Tableau用于业务监控、数据storytelling和自助式分析,推动数据民主化,提升决策效率。未来,Tableau将持续创新,扩展生态系统,并保障数据安全与合规性,助力企业最大化数据价值。
456 0
|
7月前
|
监控 数据可视化 安全
Spring Cloud可视化智慧工地大数据云平台源码(人、机、料、法、环五大维度)
智慧工地平台是依托物联网、互联网、AI、可视化建立的大数据管理平台,是一种全新的管理模式,能够实现劳务管理、安全施工、绿色施工的智能化和互联网化。围绕施工现场管理的人、机、料、法、环五大维度,以及施工过程管理的进度、质量、安全三大体系为基础应用,实现全面高效的工程管理需求,满足工地多角色、多视角的有效监管,实现工程建设管理的降本增效,为监管平台提供数据支撑。
133 2
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
探索大数据时代的关键技术:数据挖掘、可视化和数据仓库
探索大数据时代的关键技术:数据挖掘、可视化和数据仓库
560 0
|
2月前
|
消息中间件 监控 数据可视化
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
大数据-79 Kafka 集群模式 集群监控方案 JavaAPI获取集群指标 可视化监控集群方案: jconsole、Kafka Eagle
108 2
|
6月前
|
分布式计算 数据可视化 大数据
于SpringBoot+大数据城市景观画像可视化设计和实现
于SpringBoot+大数据城市景观画像可视化设计和实现
|
2月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
90 5
|
2月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
39 4
|
4月前
|
数据可视化 大数据
【Echarts大屏】大数据平台可视化大屏
【Echarts大屏】大数据平台可视化大屏
【Echarts大屏】大数据平台可视化大屏
|
4月前
|
数据采集 数据可视化 大数据
【优秀python大屏案例】基于python flask的前程无忧大数据岗位分析可视化大屏设计与实现
本文介绍了一个基于Python Flask框架的前程无忧大数据岗位分析可视化大屏系统,该系统通过爬虫技术采集招聘数据,利用机器学习算法进行分析,并以可视化大屏展示,旨在提高招聘市场数据分析的效率和准确性,为企业提供招聘决策支持和求职者职业规划参考。
173 2