深度学习入门者选择开源框架丨硬创公开课群友问答

简介:

深度学习入门者选择开源框架丨硬创公开课群友问答

在上周公开课《AI 从业者该如何选择深度学习开源框架丨硬创公开课》中,微软机器学习科学家彭河森博士详细讲述了各大开源框架适用的场景,课程结束后,我们特地整理了深度学习入门者较为关注的几个问答:

想学习深度学习开源框架,比如TensorFlow,Caffe,需要掌握哪些 Linux 知识?

Linux 方面的知识我认为主要在系统配置方面,这里推荐一下 Docker,Docker 是一个容器虚拟机,可以让虚拟机中的程序和硬件更紧密的结合在一起,同时省去了配置 CUDA,BLAS/LAPACK 等环境方面的麻烦,现在 Docker 本身也是一个非常火热的领域。

还没有接触过深度学习。作为一个初学者,我想知道 Mxnet 这类框架,与 Spark MLLib 里边机器学习包的关系、差异?Spark 只是提供了一些机器学习算法,可以这样理解吗?

这个问题表面上是问差异,但是我想多讲一点,首先现在工业级应用其实都离不开 Apache 生态的支持,如果一个分布式系统不和 Zookeeper 说两句话,都不好意思出来混。当然也有如 Elasticearch 一类的生命野蛮的存在,MXnet 分布式设计有一些部分是非常可圈可点的,比如利用 Yarn 进行服务器资源管理,这样的话可以很容易的和工业级分布式应用整合在一起。Spark MLLib 更多的是一些现有的功能包,包括了监督式和非监督式学习的很多常用模块。MXNet 更为专门,目前据我有限的经验,MLLib的程序基于Java虚拟机,并没有和机器层紧密结合。ELK = Elasticsearch + Logstash + kibana :),Elasticsearch 5.0很好很强大,加入了Beats也可以研究一下。

对深度学习硬件支撑这一块的看法。

硬件很有意思,例如图像处理里面,非常大的运算量是用在了卷积层计算上面。所谓卷积层计算,就是将图像通过深度网络,映射到更低的维度上面去,图像卷积操作可能到了某一天,会出现一个视网膜一样的硬件,在摄像头上面就已经完成了卷积操作,我们传图像的时候,可能传一个类似于 meta tag 的东西。这样的话 FPGA 就有大大的用处。(有群友继续问到:是否类 似Autoencoder)Autoencoder 是一个逻辑上的概念,应该说叫做 ASIC,Application Specific Integrated Circuit,最后成平也就是手机芯片的一个小模块。

相关阅读:

《AI 从业者该如何选择深度学习开源框架丨硬创公开课》


本文作者:亚峰


本文转自雷锋网禁止二次转载,原文链接

相关文章
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
25天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
62 3
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
软件工程师,入门下深度学习吧
软件工程师,入门下深度学习吧
65 9
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
2月前
|
机器学习/深度学习 自然语言处理 TensorFlow
课外阅读之深度学习如何入门?
课外阅读之深度学习如何入门?
44 0
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深度学习如何入门?
深度学习入门的指南,包括准备基础知识、学习深度学习理论、实践操作、进阶学习、参与社区和不断实践与反思等步骤。
61 0
|
2月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
2月前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)