MIT人工智能算法披露:我们如何用 200 万张图片预见 1.5 秒后的世界?

简介:

我们生活在物理世界里,但往往没有深入思考这样一个问题:自己是如何迅速理解周边事物的?

人类能够对背景的变化、事物之间的相互关联等等做出非常自然的反应。而且,这些反应并不会耗费我们多少注意力,同时还能处理得非常妥帖。

但是,人类的这种与生俱来的能力对于机器来说就没那么简单了。对于一个事物,其潜在发展的变化方式有成千上万种可能,这让计算机学会如何正确地做出预测是非常困难的。

近期,麻省理工学院(MIT)计算科学与人工智能实验室(CSAIL)的研究工作者的一项研究成果再次推进了机器学习的发展。深度学习算法仅仅通过一张图片,就可以让计算机便生成一小段视频来模拟图中场景,并预测接下来会发生的情景。

训练过程使用了 200 万个无标签的镜头,视频总时长达一年。相比使用基准模型算法,这一算法生成的视频更真实。在测试过程中,深度学习算法生成的视频和比基准模型算法真实度高了 20%。

研究团队称,这项技术可以用于改进安检策略、提高自动驾驶安全性等诸多领域。据该实验室博士生与第一作者透露,这一算法能够实现人类活动的机器识别从而摆脱人工识别的高昂费用。

“这些视频展现了电脑认为将会发生的场景,”Vondrick 表示,“如果你可以预测未来,那么你必须能够理解目前发生的事情。“Vondrick、MIT 教授 Antonio Torralba 还有 Hamed Pirsiavash 教授共同发表的这一成果。Pirsiavash 教授是 CSAIL 的博士后,现于马里兰大学担任教授。这项工作将于下周在巴塞罗那召开的神经信息处理系统大会(NIPS)上展出。

MIT人工智能算法披露:我们如何用 200 万张图片预见 1.5 秒后的世界?

MIT人工智能实验室使用深度学习算法生成预测性视频。图为沙滩、运动、火车站及医院的预测结果

MIT人工智能算法披露:我们如何用 200 万张图片预见 1.5 秒后的世界?

此项目花费了近两年的时间让算法“学习”两百万幅未加标签的视频。

动态视觉

许多计算机视觉领域的研究工作都研究过类似的课题,包括 MIT 教授 Bill Freeman。Freeman 教授近期的关于“动态视觉”的课题同样是研究对一个场景主动生成未来几帧的图像,不过他所提出的问题模型集中在解决未来视频的推断上。这是先前研究成果中未出现过的。

以往的系统模型逐帧重建场景,通常会在边缘有较大误差。与此相反,这项研究攻克了“建立整个场景”的难题,算法从一开始就能产生帧率为 32 的视频。

“逐帧建立场景就像玩 Telephone Game 一样(Telephone Game 是什么?传送门:http://icebreakerideas.com/telephone-game/),在屋里转一圈后信息便已经大相径庭了。”Vondrick 说道,“一次性地处理一整个场景,就好比这个游戏中你能将消息传给所有人一样。”

当然,在同时生产所有场景时会有一些权衡,并且针对长视频,计算机模型也是非常复杂的,但这一结果在逐渐变得准确。这种精准的预测相对于增加的复杂度是非常值得的。为了建立多帧场景,研究工作者训练计算机来区分前景和背景。而后将提取的对象放回视频中再训练,哪个部分是静止的,哪个部分是运动的。

研究团队使用称作“adversarial learning”的深度学习算法,该方法训练两个竞争神经网络。其中一个神经网络生成视频,另一个作为检测器寻找生成视频与原视频的不同。

通过训练,视频生成的结果便可以骗过检测器。此时,这一模型可以生成诸如海滩、火车站、医院、高尔夫球场等场景。比如,海滩模型可以生成海浪,高尔夫球场模型可以生成草坪上走动的人群。

MIT人工智能算法披露:我们如何用 200 万张图片预见 1.5 秒后的世界?

团队使用两个相互竞争的神经网络。高斯白噪声输入到系统G产生虚假视频,选择性的将真是视频或是虚假视频送入到系统D中,输出后得到真实的视频。

MIT人工智能算法披露:我们如何用 200 万张图片预见 1.5 秒后的世界?

其中一个网络的工作过程具体如上图,将 100dB 的白噪声分别输入到前景和背景图流中,在进行采样和 Sigmoid 蒙版处理,得到参数并根据公式生成空时图像矩阵,从而产生视频。

MIT人工智能算法披露:我们如何用 200 万张图片预见 1.5 秒后的世界?尽管还有人怀疑视频到底是真实的还是虚假的,但这的确已取得很大进步。

MIT人工智能算法披露:我们如何用 200 万张图片预见 1.5 秒后的世界?

这个系统将努力学习这个世界,比如前景背景的分割。上图为该算法的图像分割技术,可以得到前景和背景图。

场景测试

研究团队将该方法生成的视频与基准模型方法的结果做出比对,通过询问测试者哪种结果更加真实来给出判决。从 150 位测试者提供的 13000 个结果中,认为前者更真实的结果数量相比后者高出 20%。

Vondrick 强调目前这一模型还欠缺一些简化的常识性准则。例如,算法有时不能理解目标移动后所占用的区域会不会发生变化,比如贯穿画面的一列火车。此外算法生成的人和物的尺寸会看起来比实际大很多。

另一个限制因素是时间,该算法生成的视频仅仅能持续 1.5 秒。在后期研究工作中,他们团队期待可以增加时间。但是这是个不小的挑战,因为这要求算法计算相隔较远的时间点上的相关性,从而确保景象仍然在更长时间内是说得通的。解决这个问题的一个方法是使用监督学习。

“在一个视频的长时间段中想要搜罗到精确的信息非常困难。”Vondrick 认为,“如果一个视频里既包括做饭又含有吃饭的活动,那么必须使这两个动作之间产生互相关,从而使得视频看起来更加准确。”

这种模型并不局限于预测未来。生成的视频还可以用来美化静态图片,赋之以动态效果。就像“哈利波特”电影中的报纸一样充满灵动感。这种模型还可以帮助人类检测安全连续镜头下的异常。此外,在存储和发送长视频文件方面,该模型还可以帮助压缩文件。

“未来,这项技术将会扩展我们的视觉系统,仅仅训练一些视频而不再需要监督学习,就能识别物体和景象。”Vondrick 说道。

via MIT CSAIL


本文作者:sunshine_lady


本文转自雷锋网禁止二次转载,原文链接

相关文章
|
3月前
|
传感器 人工智能 监控
智慧工地 AI 算法方案
智慧工地AI算法方案通过集成多种AI算法,实现对工地现场的全方位安全监控、精准质量检测和智能进度管理。该方案涵盖平台层、展现层与应用层、基础层,利用AI技术提升工地管理的效率和安全性,减少人工巡检成本,提高施工质量和进度管理的准确性。方案具备算法精准高效、系统集成度高、可扩展性强和成本效益显著等优势,适用于人员安全管理、施工质量监控和施工进度管理等多个场景。
115 0
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
130 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
352 55
|
3月前
|
传感器 人工智能 监控
智慧电厂AI算法方案
智慧电厂AI算法方案通过深度学习和机器学习技术,实现设备故障预测、发电运行优化、安全监控和环保管理。方案涵盖平台层、展现层、应用层和基础层,具备精准诊断、智能优化、全方位监控等优势,助力电厂提升效率、降低成本、保障安全和环保合规。
116 1
智慧电厂AI算法方案
|
26天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
74 13
|
2月前
|
机器学习/深度学习 人工智能 算法
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
113 8
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
2月前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
56 6
【AI系统】QNNPack 算法
|
2月前
|
存储 人工智能 缓存
【AI系统】Im2Col 算法
Caffe 作为早期的 AI 框架,采用 Im2Col 方法优化卷积计算。Im2Col 将卷积操作转换为矩阵乘法,通过将输入数据重排为连续内存中的矩阵,减少内存访问次数,提高计算效率。该方法首先将输入图像转换为矩阵,然后利用 GEMM 库加速计算,最后将结果转换回原格式。这种方式显著提升了卷积计算的速度,尤其适用于通道数较多的卷积层。
70 5
【AI系统】Im2Col 算法
|
2月前
|
存储 机器学习/深度学习 人工智能
【AI系统】Winograd 算法
本文详细介绍Winograd优化算法,该算法通过增加加法操作来减少乘法操作,从而加速卷积计算。文章首先回顾Im2Col技术和空间组合优化,然后深入讲解Winograd算法原理及其在一维和二维卷积中的应用,最后讨论算法的局限性和实现步骤。Winograd算法在特定卷积参数下表现优异,但其应用范围受限。
58 2
【AI系统】Winograd 算法