Yann LeCun清华演讲:讲述深度学习与人工智能的未来

简介:

Yann LeCun清华演讲:讲述深度学习与人工智能的未来

半个月前,Yann LeCun要来清华演讲的消息在国内AI圈一经传开,各位AI界人士便坐不住了。作为Facebook人工智能研究院院长、纽约大学终身教授、卷积神经网络之父,LeCun已然成为了AI人心目中的男神。

演讲当天(3月22日),雷锋网(公众号:雷锋网)也来到了LeCun的演讲现场。演讲开始前,只见许多想要听演讲,却无奈没有得到票的同学,焦急地坚守在演讲大厅门前,希望能一睹男神风采,或运气爆棚能偶得一票。一个专业性质极强的学术演讲能吸引这么多人来参加,也再一次体现了Yann LeCun的个人魅力和在AI界的影响力。也许是被莘莘学子们热爱学习的精神所打动,最后,工作人员临时加开了演讲大厅的二楼,让许多没有票的同学也能进入大厅,最后现场可谓是座无虚席。

据雷锋网了解,Yann LeCun此次演讲由清华大学经济管理学院发起,清华 x-lab、Facebook 共同主办,作为《创新与创业:硅谷洞察》课程的第一节公开课的演讲者,昨日,LeCun为大家带来的演讲题目为《深度学习与人工智能的未来》。

这两年,提起AI一定绕不开的一个话题就是AlphaGo。演讲刚开始,LeCun也以这个大家熟知的事件说起,随即引出一个问题:

“当有大量可用样本(比如桌椅、猫狗、和人)时,训练机器没有问题;但如果机器从来没有见过这些实物,它还能识别出样本吗?”

带着这个问题,LeCun开始了当天的演讲。

演讲中,LeCun带大家回顾了神经网络的发展历程,并以身边的小故事为例,讲述了神经网络发展在早期被受质疑,遭遇重重瓶颈,而在当下则是备受好评、突破不断,他向大家展示了在这两个阶段,人们对神经网络截然不同的看法。

接着,LeCun讲到,如今,AI发展的一大难题就是怎么样才能让机器掌握人类常识。掌握人类常识是让机器和人类自然互动的关键。想要做到这一点,它需要拥有一个内在模型,以具备预测的能力。LeCun用一个公式简洁地概括了这种人工智能系统:预测+规划=推理。而研究人员现在要做的,就是不需依赖人类训练,让机器学会自己构建这个内在模型。

除了AI发展的困境,LeCun还和大家分享了神经网络当下的研究进展。

如今,深度卷积网络已可用于解决包括目标识别在内的各类计算机视觉问题。并且,随着网络深度不断增加,还出现了可用于图像识别、语义分割、ADAS 等众多场景的新型深度卷积神经网络结构,如VGG、GoogLeNet、ResNet 等。

LeCun在演讲中还特别提到Facebook人工智能研究院的最新研究成果——通用目标分割框架 Mask R-CNN,并展示了该框架在 COCO 数据集上的结果(详细内容请参见雷锋网报道Facebook 最新论文:Mask R-CNN实例分割通用框架,检测,分割和特征点定位一次搞定(多图))。

最后,LeCun还为大家带来了一系列技术干货:具体讲解了对抗训练中的深度卷积对抗生成网络 (DCGAN)和基于能量的对抗生成网络(EBGAN),还提到了语义分割的视频预测技术,并向大家展示了时间预测结果。

演讲一结束,同学们迫不及待地涌上前去,向LeCun提出自己的疑问。LeCun也对每个同学的问题做出了详细解答,令同学们收获良多。

而对近日腾讯围棋 AI 绝艺夺冠这一消息,LeCun也表示非常欣喜,并且看好AI在ADAS、医疗等领域的发展。

本文作者:夏睿

本文转自雷锋网禁止二次转载,原文链接

相关文章
|
14天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
51 3
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
16天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
73 9
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
34 7
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
20 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
41 3
|
15天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
38 2
|
17天前
|
机器学习/深度学习 人工智能 物联网
深度学习:物联网大数据洞察中的人工智能
深度学习:物联网大数据洞察中的人工智能

热门文章

最新文章