TensorFlow教程之API DOC 6.3.4. CONTROL FLOW OPS

简介:

本文档为TensorFlow参考文档,本转载已得到TensorFlow中文社区授权。


Control Flow

Note: Functions taking Tensor arguments can also take anything accepted by tf.convert_to_tensor.

Contents

Control Flow

Control Flow Operations

TensorFlow provides several operations and classes that you can use to control the execution of operations and add conditional dependencies to your graph.


tf.identity(input, name=None)

Return a tensor with the same shape and contents as the input tensor or value.

Args:
  • input: A Tensor.
  • name: A name for the operation (optional).
Returns:

Tensor. Has the same type as input.


tf.tuple(tensors, name=None, control_inputs=None)

Group tensors together.

This creates a tuple of tensors with the same values as the tensors argument, except that the value of each tensor is only returned after the values of all tensors have been computed.

control_inputs contains additional ops that have to finish before this op finishes, but whose outputs are not returned.

This can be used as a "join" mechanism for parallel computations: all the argument tensors can be computed in parallel, but the values of any tensor returned by tuple are only available after all the parallel computations are done.

See also group and with_dependencies.

Args:
  • tensors: A list of Tensors or IndexedSlices, some entries can be None.
  • name: (optional) A name to use as a name_scope for the operation.
  • control_inputs: List of additional ops to finish before returning.
Returns:

Same as tensors.

Raises:
  • ValueError: If tensors does not contain any Tensor or IndexedSlices.

tf.group(*inputs, **kwargs)

Create an op that groups multiple operations.

When this op finishes, all ops in input have finished. This op has no output.

See also tuple and with_dependencies.

Args:
  • *inputs: One or more tensors to group.
  • **kwargs: Optional parameters to pass when constructing the NodeDef.
  • name: A name for this operation (optional).
Returns:

An Operation that executes all its inputs.

Raises:
  • ValueError: If an unknown keyword argument is provided, or if there are
           no inputs.
    

tf.no_op(name=None)

Does nothing. Only useful as a placeholder for control edges.

Args:
  • name: A name for the operation (optional).
Returns:

The created Operation.


tf.count_up_to(ref, limit, name=None)

Increments 'ref' until it reaches 'limit'.

This operation outputs "ref" after the update is done. This makes it easier to chain operations that need to use the updated value.

Args:
  • ref: A mutable Tensor. Must be one of the following types: int32int64. Should be from a scalar Variable node.
  • limit: An int. If incrementing ref would bring it above limit, instead generates an 'OutOfRange' error.
  • name: A name for the operation (optional).
Returns:

Tensor. Has the same type as ref. A copy of the input before increment. If nothing else modifies the input, the values produced will all be distinct.

Logical Operators

TensorFlow provides several operations that you can use to add logical operators to your graph.


tf.logical_and(x, y, name=None)

Returns the truth value of x AND y element-wise.

Args:
  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.logical_not(x, name=None)

Returns the truth value of NOT x element-wise.

Args:
  • x: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.logical_or(x, y, name=None)

Returns the truth value of x OR y element-wise.

Args:
  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.logical_xor(x, y, name='LogicalXor')

x ^ y = (x | y) & ~(x & y).

Comparison Operators

TensorFlow provides several operations that you can use to add comparison operators to your graph.


tf.equal(x, y, name=None)

Returns the truth value of (x == y) element-wise.

Args:
  • x: A Tensor. Must be one of the following types: float32float64int32int64complex64quint8qint8qint32.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.not_equal(x, y, name=None)

Returns the truth value of (x != y) element-wise.

Args:
  • x: A Tensor. Must be one of the following types: float32float64int32int64complex64quint8qint8qint32.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.less(x, y, name=None)

Returns the truth value of (x < y) element-wise.

Args:
  • x: A Tensor. Must be one of the following types: float32float64int32int64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.less_equal(x, y, name=None)

Returns the truth value of (x <= y) element-wise.

Args:
  • x: A Tensor. Must be one of the following types: float32float64int32int64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.greater(x, y, name=None)

Returns the truth value of (x > y) element-wise.

Args:
  • x: A Tensor. Must be one of the following types: float32float64int32int64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.greater_equal(x, y, name=None)

Returns the truth value of (x >= y) element-wise.

Args:
  • x: A Tensor. Must be one of the following types: float32float64int32int64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.select(condition, t, e, name=None)

Selects elements from t or e, depending on condition.

The conditiont, and e tensors must all have the same shape, and the output will also have that shape. The condition tensor acts as an element-wise mask that chooses, based on the value at each element, whether the corresponding element in the output should be taken from t (if true) or e (if false). For example:

For example:

# 'condition' tensor is [[True, False]
#                        [True, False]]
# 't' is [[1, 1],
#         [1, 1]]
# 'e' is [[2, 2],
#         [2, 2]]
select(condition, t, e) ==> [[1, 2],
                             [1, 2]]
Args:
  • condition: A Tensor of type bool.
  • t: A Tensor with the same shape as condition.
  • e: A Tensor with the same type and shape as t.
  • name: A name for the operation (optional).
Returns:

Tensor with the same type and shape as t and e.


tf.where(input, name=None)

Returns locations of true values in a boolean tensor.

This operation returns the coordinates of true elements in input. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in input. Indices are output in row-major order.

For example:

# 'input' tensor is [[True, False]
#                    [True, False]]
# 'input' has two true values, so output has two coordinates.
# 'input' has rank of 2, so coordinates have two indices.
where(input) ==> [[0, 0],
                  [1, 0]]

# `input` tensor is [[[True, False]
#                     [True, False]]
#                    [[False, True]
#                     [False, True]]
#                    [[False, False]
#                     [False, True]]]
# 'input' has 5 true values, so output has 5 coordinates.
# 'input' has rank of 3, so coordinates have three indices.
where(input) ==> [[0, 0, 0],
                  [0, 1, 0],
                  [1, 0, 1],
                  [1, 1, 1],
                  [2, 1, 1]]
Args:
  • input: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

Tensor of type int64.

Debugging Operations

TensorFlow provides several operations that you can use to validate values and debug your graph.


tf.is_finite(x, name=None)

Returns which elements of x are finite.

Args:
  • x: A Tensor. Must be one of the following types: float32float64.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.is_inf(x, name=None)

Returns which elements of x are Inf.

Args:
  • x: A Tensor. Must be one of the following types: float32float64.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.is_nan(x, name=None)

Returns which elements of x are NaN.

Args:
  • x: A Tensor. Must be one of the following types: float32float64.
  • name: A name for the operation (optional).
Returns:

Tensor of type bool.


tf.verify_tensor_all_finite(t, msg, name=None)

Assert that the tensor does not contain any NaN's or Inf's.

Args:
  • t: Tensor to check.
  • msg: Message to log on failure.
  • name: A name for this operation (optional).
Returns:

Same tensor as t.


tf.check_numerics(tensor, message, name=None)

Checks a tensor for NaN and Inf values.

When run, reports an InvalidArgument error if tensor has any values that are not a number (NaN) or infinity (Inf). Otherwise, passes tensor as-is.

Args:
  • tensor: A Tensor. Must be one of the following types: float32float64.
  • message: A string. Prefix of the error message.
  • name: A name for the operation (optional).
Returns:

Tensor. Has the same type as tensor.


tf.add_check_numerics_ops()

Connect a check_numerics to every floating point tensor.

check_numerics operations themselves are added for each float or double tensor in the graph. For all ops in the graph, the check_numerics op for all of its (float or double) inputs is guaranteed to run before the check_numerics op on any of its outputs.

Returns:

group op depending on all check_numerics ops added.


tf.Assert(condition, data, summarize=None, name=None)

Asserts that the given condition is true.

If condition evaluates to false, print the list of tensors in datasummarize determines how many entries of the tensors to print.

Args:
  • condition: The condition to evaluate.
  • data: The tensors to print out when condition is false.
  • summarize: Print this many entries of each tensor.
  • name: A name for this operation (optional).

tf.Print(input_, data, message=None, first_n=None, summarize=None, name=None)

Prints a list of tensors.

This is an identity op with the side effect of printing data when evaluating.

Args:
  • input_: A tensor passed through this op.
  • data: A list of tensors to print out when op is evaluated.
  • message: A string, prefix of the error message.
  • first_n: Only log first_n number of times. Negative numbers log always;
        this is the default.
    
  • summarize: Only print this many entries of each tensor.
  • name: A name for the operation (optional).
Returns:

Same tensor as input_.

相关文章
|
1月前
|
网络协议 API
检测指定TCP端口开放状态免费API接口教程
此API用于检测指定TCP端口是否开放,支持POST/GET请求。需提供用户ID、KEY、目标主机,可选指定端口(默认80)和地区(默认国内)。返回状态码、信息提示、检测主机、端口及状态(开放或关闭)。示例中ID和KEY为公共测试用,建议使用个人ID和KEY以享受更高调用频率。
58 14
|
1月前
|
API
获取网页状态码[可指定地域]免费API接口教程
该接口用于获取指定网址的访问状态码,支持从国内、香港、美国等地域节点访问。通过POST或GET请求,需提供用户ID、KEY及目标网址等参数。返回结果包括状态码和信息提示。 示例:https://cn.apihz.cn/api/wangzhan/getcode.php?id=88888888&key=88888888&type=1&url=www.apihz.cn。
|
1月前
|
缓存 算法 API
查询域名WHOIS信息免费API接口教程
该API用于查询顶级域名的WHOIS信息,不支持国别域名和中文域名。通过POST或GET请求,需提供用户ID、KEY及待查询域名。返回信息包括域名状态、注册商、时间等详细数据。示例与文档见官网。
|
1月前
|
前端开发 JavaScript API
提取网页所有链接免费API接口教程
此API用于提取指定网页内的所有链接信息并进行分类,支持POST和GET请求方式。需提供用户ID、KEY及目标网址等参数,可选指定访问节点。返回结果包括状态码、信息提示及各类链接集合,如图片、视频、文档等。示例中展示了请求格式与返回数据结构。
|
2天前
|
JSON API 数据格式
京东商品SKU价格接口(Jd.item_get)丨京东API接口指南
京东商品SKU价格接口(Jd.item_get)是京东开放平台提供的API,用于获取商品详细信息及价格。开发者需先注册账号、申请权限并获取密钥,随后通过HTTP请求调用API,传入商品ID等参数,返回JSON格式的商品信息,包括价格、原价等。接口支持GET/POST方式,适用于Python等语言的开发环境。
28 11
|
25天前
|
人工智能 自然语言处理 API
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
谷歌推出的Multimodal Live API是一个支持多模态交互、低延迟实时互动的AI接口,能够处理文本、音频和视频输入,提供自然流畅的对话体验,适用于多种应用场景。
73 3
Multimodal Live API:谷歌推出新的 AI 接口,支持多模态交互和低延迟实时互动
|
13天前
|
JSON 安全 API
淘宝商品详情API接口(item get pro接口概述)
淘宝商品详情API接口旨在帮助开发者获取淘宝商品的详细信息,包括商品标题、描述、价格、库存、销量、评价等。这些信息对于电商企业而言具有极高的价值,可用于商品信息展示、市场分析、价格比较等多种应用场景。
|
21天前
|
前端开发 API 数据库
Next 编写接口api
Next 编写接口api
|
27天前
|
XML JSON 缓存
阿里巴巴商品详情数据接口(alibaba.item_get) 丨阿里巴巴 API 实时接口指南
阿里巴巴商品详情数据接口(alibaba.item_get)允许商家通过API获取商品的详细信息,包括标题、描述、价格、销量、评价等。主要参数为商品ID(num_iid),支持多种返回数据格式,如json、xml等,便于开发者根据需求选择。使用前需注册并获得App Key与App Secret,注意遵守使用规范。