Deep Reinforcement Learning with a Natural Language Action Space

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介:

本文继续分享一篇深度增强学习在NLP中应用的paper,题目是Deep Reinforcement Learning with a Natural Language Action Space,作者是来自微软的Ji He博士,文章最早于2015年11月发在arxiv上,2016年6月8号update。

通过前两篇文章的介绍,基本对DQN在NLP中应用有了一个清晰的认识,与DQN之前应用不同的地方在于两个方面:

1、actions的量级很大。

2、transition tuple的具体形式随着模型来变化。

本文也是以text games为研究背景,将输入从state变为(state,action)对,提出了Deep Reinforcement Relevant Network(DRRN)模型。

上图中,前两个是baseline模型,第三个是本文模型,理解起来都比较简单。

(a) Max-action DQN

该模型适用于每一个transition中actions的最大数量是已知的情况,将每个transition中state和actions拼接成一个向量作为输入,通过一个Deep Network得到每个action的Q值。

(b) Per-action DQN

该模型将每一对(state,action)拼接成一个向量作为输入,通过network得到每个action的Q值。

(c) DRRN

本文模型分别将每对(state,action)中的state和action单独构建network,分别学习出不同的表示,然后用一种逐元素操作方法得到Q值,比如对两个向量作内积。这里,state往往是一个比较长的文本,可能是几句话,而action一般来说是一个动词短语,通过不同的网络结构进行学习,得到相同维度的表示,然后做内积,内积就是相似度的一种表征,也就是本文模型中的relevant。

其实,对比着看不同DRL paper,只需要仔细对比看算法流程图,就知道哪些地方不同了,本文的如下图:

本文算法中还有一个不同的地方在于,在策略选择上的trade-off,一般的方法均采用ε-greedy策略,本文用了一种softmax selection的方法来做exploration(对应着ε)策略,根据下面计算出的概率来进行选择:

本文模型最大的优点在于可以处理比较复杂的action,不像Language Understanding for Text-based Games using Deep Reinforcement Learning文章中只能处理一个action word加一个object word组成的command。

本文考虑问题的角度不同,不是传统RL给定一个state,然后通过一个最优的Q来确定一个最优的action,而是将state和action放在一个层面上来做计算,虽然最后也是通过最优的Q来选择action,但通过用action和state的相关性来计算Q,使得其具有更广的应用前景。

这是DQN在NLP中应用系列的最后一篇文章,文章数量比较少,所以不写综述了。整体的感觉是,应用还不太多,也没有看到特别惊艳的表现。不过,可以无穷无尽地构造训练用的样本是一个非常大的优点。三篇文章有两篇是研究text games的,只有一篇是做text generation的,并且DQN的痕迹很重,都是依着同一个框架进行修改和适应,并没有很多特别的地方。很期待,后面的研究可以将Deep Reinforcement Learning在NLP的各个任务中进行应用,像seq2seq+attention模型那样横扫整个NLP任务。


来源:paperweekly


原文链接

相关文章
|
机器学习/深度学习 算法
【RLchina第四讲】Model-Based Reinforcement Learning(下)
【RLchina第四讲】Model-Based Reinforcement Learning(下)
199 0
|
机器学习/深度学习 资源调度 算法
【RLchina第四讲】Model-Based Reinforcement Learning(上)
【RLchina第四讲】Model-Based Reinforcement Learning(上)
758 0
|
算法 Go
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
|
机器学习/深度学习 人工智能 算法
【5分钟 Paper】Reinforcement Learning with Deep Energy-Based Policies
【5分钟 Paper】Reinforcement Learning with Deep Energy-Based Policies
132 0
|
机器学习/深度学习 编解码 算法
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
【5分钟 Paper】Dueling Network Architectures for Deep Reinforcement Learning
129 0
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
162 0
|
自然语言处理 数据挖掘
【论文解读】Do Prompts Solve NLP Tasks Using Natural Language?
提示学习实现文本分类的各类方法对比的论文
101 0
|
决策智能
论文笔记之:Collaborative Deep Reinforcement Learning for Joint Object Search
Collaborative Deep Reinforcement Learning for Joint Object Search   CVPR 2017 Motivation:   传统的 bottom-up object region proposals 的方法,由于提取了较多的 proposal,导致后续计算必须依赖于抢的计算能力,如 GPU 等。
|
大数据 知识图谱
Supervised learning demo
监督学习案例 规范 假设函数: 使用h(hypothesis, 假设)表示 输入(input value) 向量或者实数: 使用小写字母x等 矩阵: 使用大写字母X等 输出(output value) 向量或者实数: 使用小写字母y等 矩阵: 使用大写字母Y等 参数(Parameter...
722 0
|
机器学习/深度学习 人工智能 自然语言处理
18 Issues in Current Deep Reinforcement Learning from ZhiHu
深度强化学习的18个关键问题   from: https://zhuanlan.zhihu.com/p/32153603     85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向。