Deep Reinforcement Learning with a Natural Language Action Space

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介:

本文继续分享一篇深度增强学习在NLP中应用的paper,题目是Deep Reinforcement Learning with a Natural Language Action Space,作者是来自微软的Ji He博士,文章最早于2015年11月发在arxiv上,2016年6月8号update。

通过前两篇文章的介绍,基本对DQN在NLP中应用有了一个清晰的认识,与DQN之前应用不同的地方在于两个方面:

1、actions的量级很大。

2、transition tuple的具体形式随着模型来变化。

本文也是以text games为研究背景,将输入从state变为(state,action)对,提出了Deep Reinforcement Relevant Network(DRRN)模型。

上图中,前两个是baseline模型,第三个是本文模型,理解起来都比较简单。

(a) Max-action DQN

该模型适用于每一个transition中actions的最大数量是已知的情况,将每个transition中state和actions拼接成一个向量作为输入,通过一个Deep Network得到每个action的Q值。

(b) Per-action DQN

该模型将每一对(state,action)拼接成一个向量作为输入,通过network得到每个action的Q值。

(c) DRRN

本文模型分别将每对(state,action)中的state和action单独构建network,分别学习出不同的表示,然后用一种逐元素操作方法得到Q值,比如对两个向量作内积。这里,state往往是一个比较长的文本,可能是几句话,而action一般来说是一个动词短语,通过不同的网络结构进行学习,得到相同维度的表示,然后做内积,内积就是相似度的一种表征,也就是本文模型中的relevant。

其实,对比着看不同DRL paper,只需要仔细对比看算法流程图,就知道哪些地方不同了,本文的如下图:

本文算法中还有一个不同的地方在于,在策略选择上的trade-off,一般的方法均采用ε-greedy策略,本文用了一种softmax selection的方法来做exploration(对应着ε)策略,根据下面计算出的概率来进行选择:

本文模型最大的优点在于可以处理比较复杂的action,不像Language Understanding for Text-based Games using Deep Reinforcement Learning文章中只能处理一个action word加一个object word组成的command。

本文考虑问题的角度不同,不是传统RL给定一个state,然后通过一个最优的Q来确定一个最优的action,而是将state和action放在一个层面上来做计算,虽然最后也是通过最优的Q来选择action,但通过用action和state的相关性来计算Q,使得其具有更广的应用前景。

这是DQN在NLP中应用系列的最后一篇文章,文章数量比较少,所以不写综述了。整体的感觉是,应用还不太多,也没有看到特别惊艳的表现。不过,可以无穷无尽地构造训练用的样本是一个非常大的优点。三篇文章有两篇是研究text games的,只有一篇是做text generation的,并且DQN的痕迹很重,都是依着同一个框架进行修改和适应,并没有很多特别的地方。很期待,后面的研究可以将Deep Reinforcement Learning在NLP的各个任务中进行应用,像seq2seq+attention模型那样横扫整个NLP任务。


来源:paperweekly


原文链接

相关文章
|
3月前
|
存储 算法 计算机视觉
【博士每天一篇文献-模型】Meta-Learning Based Tasks Similarity Representation for Cross Domain Lifelong Learning
本文提出了一种基于元学习的跨域终身学习框架,通过跨域三元组网络(CDTN)学习任务间的相似性表示,并结合自注意模块与软注意网络(SAN)来增强特征提取和任务权重分配,以提高学习效率并减少对先前知识的遗忘。
49 1
【博士每天一篇文献-模型】Meta-Learning Based Tasks Similarity Representation for Cross Domain Lifelong Learning
|
6月前
|
Python
[UNILM]论文实现:Unified Language Model Pre-training for Natural Language.........
[UNILM]论文实现:Unified Language Model Pre-training for Natural Language.........
44 0
|
自然语言处理 数据挖掘 数据处理
【提示学习】Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference
目前流行的第四大范式Prompt的主流思路是PVP,即Pattern-Verbalizer-Pair,主打的就是Pattern(模板)与Verbalizer(标签映射器)。   本文基于PVP,提出PET与iPET,但是关注点在利用半监督扩充自己的数据集,让最终模型学习很多样本,从而达到好效果。
113 0
|
机器学习/深度学习 算法
【RLchina第四讲】Model-Based Reinforcement Learning(下)
【RLchina第四讲】Model-Based Reinforcement Learning(下)
183 0
|
机器学习/深度学习 资源调度 算法
【RLchina第四讲】Model-Based Reinforcement Learning(上)
【RLchina第四讲】Model-Based Reinforcement Learning(上)
683 0
|
算法 Go
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
【5分钟 Paper】Continuous Control With Deep Reinforcement Learning
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
141 0
《NATURAL LANGUAGE UNDERSTANDING WITH MACHINE ANNOTATORS & DEEP LEARNED ONTOLOGIES AT SCALE》电子版地址
NATURAL LANGUAGE UNDERSTANDING WITH MACHINE ANNOTATORS & DEEP LEARNED ONTOLOGIES AT SCALE
97 0
《NATURAL LANGUAGE UNDERSTANDING WITH MACHINE ANNOTATORS & DEEP LEARNED ONTOLOGIES AT SCALE》电子版地址
|
TensorFlow 算法框架/工具 Python
Building deep retrieval models
In the featurization tutorial we incorporated multiple features into our models, but the models consist of only an embedding layer. We can add more dense layers to our models to increase their expressive power.
269 0
|
决策智能
论文笔记之:Collaborative Deep Reinforcement Learning for Joint Object Search
Collaborative Deep Reinforcement Learning for Joint Object Search   CVPR 2017 Motivation:   传统的 bottom-up object region proposals 的方法,由于提取了较多的 proposal,导致后续计算必须依赖于抢的计算能力,如 GPU 等。
下一篇
无影云桌面