大数据技术解决 征信环节中产生的问题

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

随着个人征信机构试点的开展,企业征信机构数量不断扩大,征信的各类应用场景也随之不断扩充,从贷款到租车、租房、医疗等消费金融,再到人才招聘、婚恋、客户合作等等,征信的应用范围正在不断发展。

征信由信用度评估和还款能力评估两部分组成

从征信的发展来看,不论是借贷金融还是消费金融,征信的主要应用是在经济交易上。那么,征信应该是由信用度评估和还款能力评估两部分组成。信用度主要是对主动契约精神和违约成本双方面的评估;还款能力是对经济能力的评估。

金融中的信用是对经济交易的评判,需对信用度和还款能力进行评估;而生活中的信用则是对诚信、承诺的评判,只需对信用度进行评估。

大数据技术解决征信环节中产生的问题

大数据在征信中的使用主要是为了相互印证,全方位、多角度、更准确地来判断信息主体的信用状况,而非利用超大量数据来分析。当然,大数据征信也可以简单理解为使用大数据技术来解决征信环节中产生的问题,如对大量相关数据进行采集和分布式存储;对这些数据进行深入的加工和挖掘。

数据的过于依赖以及数据泛滥

征信一词正在越来越受到政府、社会和公众的关注,但每当社会上出现一些难以解决的道德问题时,就有人呼吁将违反相关规定者列入社会征信系统。但是,征信是对信用的评价,而非对道德的评价。

前中国工商银行行长、银监会特邀顾问杨凯生曾经说过:“作为互联网时代的现代人,需要具有互联网思维,只有学会了怎样客观看待数据,审慎选择方法,才能从纷繁复杂的社会经济生活中提炼出有价值的结果,才能具备现代人真正的大数据思维和互联网思维。”

因此,并非什么信息都可以用来征信,也并非数据越多,征信就越精准,大数据的使用是技术的使用,而非概念。神通征信采用介于传统征信和大数据征信之间的征信方式,利用有限信息来完成征信,这样的方式既丰富、补充了传统征信的不足,但又不过分依赖于数据,利用适量的数据信息得到同样的精准度。
本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
5天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
25 2
|
24天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
83 4
|
7天前
|
存储 分布式计算 NoSQL
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
1月前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
7天前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
10天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
24 3
|
10天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
39 2
|
13天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
45 2
|
15天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
59 2