SpringAI+DeepSeek大模型应用开发

简介: 本教程以SpringAI为核心,讲解Java与大模型(如DeepSeek)融合开发,助力传统项目智能化。介绍AI基础、Transformer原理及SpringAI应用,推动Java在AI时代焕发新生。适合Java程序员入门大模型开发。

开篇介绍
本套教程会以SpringAI为基础,讲解传统Java应用与DeepSeek这样的大模型开发结合的方案,科普一下AI大模型开发的知识,促进传统项目智能化。
如果觉得文章有帮助的话,希望大家关注、推荐学弟学妹学习黑马课程。
AI时代Java程序员的出路在哪里?
2022年11月30日,OpenAI公司发布了GPT3.5模型,同时对外开放了ChatGPT产品。人工智能突然进入了普通人的生活中,各种AI应用如雨后春笋般出现。
不过,由于大模型研究的成本很高,大部分中小型企业只能望而却步,参与者有限,AI的发展也似乎陷入了瓶颈。
2025年1月20日,位于杭州的DeepSeek公司正式发布了具有划时代意义的DeepSeek-R1模型,该模型在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版,且训练成本仅为 560 万美元,远低于美国科技巨头的数亿美元乃至数十亿美元投入,这一突破彻底震惊了全球科技界。
DeepSeek的出现像是向一潭死水的AI领域投入了一颗巨石,引起了巨大的波澜。特别是其低廉的训练成本,让中小型企业有了参与AI开发的资格。
毫无疑问,接下来各行各业都将进入传统应用AI化、智能化的变革之中。Java更应该成为这场变革的引领者!要知道,全球有25亿+的Java应用正在运行,超过90的服务端应用都是采用Java语言!传统应用要向AI领域进军,最好的办法一定是使用Java语言。
然而,一直以来,AI开发似乎都是Python的强项,传统Java应用想要AI化,缺少完善的解决方案和即懂Java、又懂AI的人才,而这就是最大的机会!
为什么是SpringAI
目前大模型应用开发最常见的框架就是LangChain,然而LangChain是基于Python语言,虽然有LangChain4j,但是对于大量使用Spring生态的应用来说,适配性就稍微差了些。
而Spring公司推出的SpringAI框架,充分利用了Spring框架中AOP、IOC的能力,可以与现有的Java项目无缝融合,非常方便。
当然,SpringAI要求的JDK版本至少是JDK17,SpringBoot也必须是3.x的版本才可以,所以如果想要使用SpringAI,必须先升级JDK和SpringBoot版本才行。
如果是比较老的项目,也可以考虑采用LangChain4j,它要求的最低JDK版本为JDK8.
接下来我会带着大家从Java程序员的角度,学习大模型开发的基本知识以及SpringAI的用法,走出AI大模型应用开发的第一步。
3.课程目录
Chap01. 认识AI
Chap02. 大模型应用开发
Chap03. SpringAI
⭐️ 常用文档和链接
SpringAI官方文档:Spring AI

Chap01. 认识AI
本篇介绍了AI的一些核心概念,有利于你理解大模型开发的一些原理。
1.人工智能发展
AI,人工智能(Artificial Intelligence),使机器能够像人类一样思考、学习和解决问题的技术。
AI发展至今大概可以分为三个阶段:
其中,深度学习领域的自然语言处理(Natural Language Processing, NLP)有一个关键技术叫做Transformer,这是一种由多层感知机组成的神经网络模型,是现如今AI高速发展的最主要原因。
我们所熟知的大模型(Large Language Models, LLM),例如GPT、DeepSeek底层都是采用Transformer神经网络模型。以GPT模型为例,其三个字母的缩写分别是Generative、Pre-trained、Transformer:
那么问题来, Transformer神经网络有什么神奇的地方,可以实现如此强大的能力呢?
2.大模型原理
其实,最早Transformer是由Google在2017年提出的一种神经网络模型,一开始的作用是把它作为机器翻译的核心:
Transformer中提出的注意力机制使得神经网络在处理信息时可以根据上下内容调整对数据的理解,变得更加智能化。这不仅仅是说人类的文字,包括图片、音频数据都可以交给Transformer来处理。于是,越来越多的模型开始基于Transformer实现了各种神奇的功能。
例如,有的模型可以根据音频生成文本,或者根据文本生成音频:
还有的模型则可以根据文字生成图片,比如Dall-E、MidJourney:
不过,我们今天要聊的大语言模型(Large Language Models, 以下简称LLM)是对Transformer的另一种用法:推理预测。
LLM在训练Transformer时会尝试输入一些文本、音频、图片等信息,然后让Transformer推理接下来跟着的应该是什么内容。推理的结果会以概率分布的形式出现:
可能大家会有疑问:
仅仅是推测接下来的内容,怎么能让ChatGPT在对话中生成大段的有关联的文字内容呢?
其实LLM采用的就是笨办法,答案就是:持续生成
根据前文推测出接下来的一个词语后,把这个词语加入前文,再次交给大模型处理,推测下一个字,然后不断重复前面的过程,就可以生成大段的内容了:
这就是为什么我们跟AI聊天的时候,它生成的内容总是一个字一个字的输出的原因了。
以上就是LLM的核心技术,Transformer的原理了~
如果大家想要进一步搞清楚Transformer机制,可以参考以下两个视频:
https://www.bilibili.com/video/BV1atCRYsE7x
https://www.youtube.com/watch?v=wjZofJX0v4M&t=1169s

目录
相关文章
|
2月前
|
人工智能 自然语言处理 前端开发
SpringAI+DeepSeek大模型应用开发
SpringAI整合主流大模型,支持对话、函数调用与RAG,提供统一API,简化开发。涵盖多模态、流式传输、会话记忆等功能,助力快速构建AI应用。
|
2月前
|
人工智能 NoSQL 前端开发
springai
SpringAI整合多款主流大模型,支持对话、函数调用与RAG等架构,提供统一API简化开发。涵盖Ollama、OpenAI等平台,实现聊天机器人、智能客服、知识库问答(如ChatPDF)及多模态交互,助力快速构建AI应用。
465 0
|
存储 JSON Go
Golang 语言 gRPC 服务怎么同时支持 gRPC 和 HTTP 客户端调用?
Golang 语言 gRPC 服务怎么同时支持 gRPC 和 HTTP 客户端调用?
435 0
|
4月前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
本文介绍RAG(检索增强生成)技术,结合Spring AI与本地及云知识库实现学术分析AI应用,利用阿里云Qwen-Plus模型提升回答准确性与可信度。
1495 90
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
|
2月前
|
开发框架 人工智能 机器人
LangChain vs LangGraph:大模型应用开发的双子星框架
LangChain是大模型应用的“乐高积木”,提供标准化组件,助力快速构建简单应用;LangGraph则是“交通控制系统”,通过图结构支持复杂、有状态的工作流。两者互补,构成从原型到生产的一体化解决方案。
|
Web App开发 关系型数据库 数据库
用PostgreSQL 做实时高效 搜索引擎 - 全文检索、模糊查询、正则查询、相似查询、ADHOC查询
用PostgreSQL 做实时高效 搜索引擎 - 全文检索、模糊查询、正则查询、相似查询、ADHOC查询作者digoal 日期2017-12-05 标签PostgreSQL , 搜索引擎 , GIN , ranking , high light , 全文检索 , 模糊查询 , 正则查询 , 相似查询 , ADHOC查询 背景字符串搜索是非常常见的业务需求,它包括: 1、前缀+模糊查询。
12937 1
|
4月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1737 16
构建AI智能体:一、初识AI大模型与API调用
|
5月前
|
人工智能 Java API
构建基于Java的AI智能体:使用LangChain4j与Spring AI实现RAG应用
当大模型需要处理私有、实时的数据时,检索增强生成(RAG)技术成为了核心解决方案。本文深入探讨如何在Java生态中构建具备RAG能力的AI智能体。我们将介绍新兴的Spring AI项目与成熟的LangChain4j框架,详细演示如何从零开始构建一个能够查询私有知识库的智能问答系统。内容涵盖文档加载与分块、向量数据库集成、语义检索以及与大模型的最终合成,并提供完整的代码实现,为Java开发者开启构建复杂AI智能体的大门。
2620 58
|
9月前
|
人工智能 Java API
Spring AI 实战|Spring AI入门之DeepSeek调用
本文介绍了Spring AI框架如何帮助Java开发者轻松集成和使用大模型API。文章从Spring AI的初探开始,探讨了其核心能力及应用场景,包括手动与自动发起请求、流式响应实现打字机效果,以及兼容不同AI服务(如DeepSeek、通义千问)的方法。同时,还详细讲解了如何在生产环境中添加监控以优化性能和成本管理。通过Spring AI,开发者可以简化大模型调用流程,降低复杂度,为企业智能应用开发提供强大支持。最后,文章展望了Spring AI在未来AI时代的重要作用,鼓励开发者积极拥抱这一技术变革。
3147 71
Spring AI 实战|Spring AI入门之DeepSeek调用
|
7月前
|
Prometheus Kubernetes 监控
Kubernetes(k8s)高可用性集群的构建详细步骤
构建高可用Kubernetes集群涉及到的层面非常广泛,包括硬件资源的配置、网络配置以及集群维护策略的规划。因此,在实际操作中,可能还需要根据特定环境和业务需求进行调整和优化。
2175 19

热门文章

最新文章