SpringAI+DeepSeek大模型应用开发

简介: 本教程以SpringAI为核心,讲解Java与大模型(如DeepSeek)融合开发,助力传统项目智能化。介绍AI基础、Transformer原理及SpringAI应用,推动Java在AI时代焕发新生。适合Java程序员入门大模型开发。

开篇介绍
本套教程会以SpringAI为基础,讲解传统Java应用与DeepSeek这样的大模型开发结合的方案,科普一下AI大模型开发的知识,促进传统项目智能化。
如果觉得文章有帮助的话,希望大家关注、推荐学弟学妹学习黑马课程。
AI时代Java程序员的出路在哪里?
2022年11月30日,OpenAI公司发布了GPT3.5模型,同时对外开放了ChatGPT产品。人工智能突然进入了普通人的生活中,各种AI应用如雨后春笋般出现。
不过,由于大模型研究的成本很高,大部分中小型企业只能望而却步,参与者有限,AI的发展也似乎陷入了瓶颈。
2025年1月20日,位于杭州的DeepSeek公司正式发布了具有划时代意义的DeepSeek-R1模型,该模型在数学、代码、自然语言推理等任务上,性能比肩 OpenAI o1 正式版,且训练成本仅为 560 万美元,远低于美国科技巨头的数亿美元乃至数十亿美元投入,这一突破彻底震惊了全球科技界。
DeepSeek的出现像是向一潭死水的AI领域投入了一颗巨石,引起了巨大的波澜。特别是其低廉的训练成本,让中小型企业有了参与AI开发的资格。
毫无疑问,接下来各行各业都将进入传统应用AI化、智能化的变革之中。Java更应该成为这场变革的引领者!要知道,全球有25亿+的Java应用正在运行,超过90的服务端应用都是采用Java语言!传统应用要向AI领域进军,最好的办法一定是使用Java语言。
然而,一直以来,AI开发似乎都是Python的强项,传统Java应用想要AI化,缺少完善的解决方案和即懂Java、又懂AI的人才,而这就是最大的机会!
为什么是SpringAI
目前大模型应用开发最常见的框架就是LangChain,然而LangChain是基于Python语言,虽然有LangChain4j,但是对于大量使用Spring生态的应用来说,适配性就稍微差了些。
而Spring公司推出的SpringAI框架,充分利用了Spring框架中AOP、IOC的能力,可以与现有的Java项目无缝融合,非常方便。
当然,SpringAI要求的JDK版本至少是JDK17,SpringBoot也必须是3.x的版本才可以,所以如果想要使用SpringAI,必须先升级JDK和SpringBoot版本才行。
如果是比较老的项目,也可以考虑采用LangChain4j,它要求的最低JDK版本为JDK8.
接下来我会带着大家从Java程序员的角度,学习大模型开发的基本知识以及SpringAI的用法,走出AI大模型应用开发的第一步。
3.课程目录
Chap01. 认识AI
Chap02. 大模型应用开发
Chap03. SpringAI
⭐️ 常用文档和链接
SpringAI官方文档:Spring AI

Chap01. 认识AI
本篇介绍了AI的一些核心概念,有利于你理解大模型开发的一些原理。
1.人工智能发展
AI,人工智能(Artificial Intelligence),使机器能够像人类一样思考、学习和解决问题的技术。
AI发展至今大概可以分为三个阶段:
其中,深度学习领域的自然语言处理(Natural Language Processing, NLP)有一个关键技术叫做Transformer,这是一种由多层感知机组成的神经网络模型,是现如今AI高速发展的最主要原因。
我们所熟知的大模型(Large Language Models, LLM),例如GPT、DeepSeek底层都是采用Transformer神经网络模型。以GPT模型为例,其三个字母的缩写分别是Generative、Pre-trained、Transformer:
那么问题来, Transformer神经网络有什么神奇的地方,可以实现如此强大的能力呢?
2.大模型原理
其实,最早Transformer是由Google在2017年提出的一种神经网络模型,一开始的作用是把它作为机器翻译的核心:
Transformer中提出的注意力机制使得神经网络在处理信息时可以根据上下内容调整对数据的理解,变得更加智能化。这不仅仅是说人类的文字,包括图片、音频数据都可以交给Transformer来处理。于是,越来越多的模型开始基于Transformer实现了各种神奇的功能。
例如,有的模型可以根据音频生成文本,或者根据文本生成音频:
还有的模型则可以根据文字生成图片,比如Dall-E、MidJourney:
不过,我们今天要聊的大语言模型(Large Language Models, 以下简称LLM)是对Transformer的另一种用法:推理预测。
LLM在训练Transformer时会尝试输入一些文本、音频、图片等信息,然后让Transformer推理接下来跟着的应该是什么内容。推理的结果会以概率分布的形式出现:
可能大家会有疑问:
仅仅是推测接下来的内容,怎么能让ChatGPT在对话中生成大段的有关联的文字内容呢?
其实LLM采用的就是笨办法,答案就是:持续生成
根据前文推测出接下来的一个词语后,把这个词语加入前文,再次交给大模型处理,推测下一个字,然后不断重复前面的过程,就可以生成大段的内容了:
这就是为什么我们跟AI聊天的时候,它生成的内容总是一个字一个字的输出的原因了。
以上就是LLM的核心技术,Transformer的原理了~
如果大家想要进一步搞清楚Transformer机制,可以参考以下两个视频:
https://www.bilibili.com/video/BV1atCRYsE7x
https://www.youtube.com/watch?v=wjZofJX0v4M&t=1169s

目录
相关文章
|
1天前
|
存储 机器学习/深度学习 人工智能
打破硬件壁垒!煎饺App:强悍AI语音工具,为何是豆包AI手机平替?
直接上干货!3000 字以上长文,细节拉满,把核心功能、使用技巧和实测结论全给大家摆明白,读完你就知道这款 “安卓机通用 AI 语音工具"——煎饺App它为何能打破硬件壁垒?它接下来,咱们就深度拆解煎饺 App—— 先给大家扒清楚它的使用逻辑,附上“操作演示”和“🚀快速上手不踩坑 : 4 条核心操作干货(必看)”,跟着走零基础也能快速上手;后续再用真实实测数据,正面硬刚煎饺 App的语音助手口令效果——创建京东「牛奶自动下单神器」口令 ,从修改口令、识别准确率到场景实用性,逐一测试不掺水,最后,再和豆包 AI 手机语音助手的普通版——豆包App对比测试下,简单地谈谈煎饺App的能力边界在哪?
|
3天前
|
云安全 监控 安全
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1063 5
|
10天前
|
机器学习/深度学习 人工智能 数据可视化
1秒生图!6B参数如何“以小博大”生成超真实图像?
Z-Image是6B参数开源图像生成模型,仅需16GB显存即可生成媲美百亿级模型的超真实图像,支持中英双语文本渲染与智能编辑,登顶Hugging Face趋势榜,首日下载破50万。
711 42
|
14天前
|
人工智能 Java API
Java 正式进入 Agentic AI 时代:Spring AI Alibaba 1.1 发布背后的技术演进
Spring AI Alibaba 1.1 正式发布,提供极简方式构建企业级AI智能体。基于ReactAgent核心,支持多智能体协作、上下文工程与生产级管控,助力开发者快速打造可靠、可扩展的智能应用。
1144 41
|
14天前
|
人工智能 前端开发 算法
大厂CIO独家分享:AI如何重塑开发者未来十年
在 AI 时代,若你还在紧盯代码量、执着于全栈工程师的招聘,或者仅凭技术贡献率来评判价值,执着于业务提效的比例而忽略产研价值,你很可能已经被所谓的“常识”困住了脚步。
881 72
大厂CIO独家分享:AI如何重塑开发者未来十年
|
10天前
|
存储 自然语言处理 测试技术
一行代码,让 Elasticsearch 集群瞬间雪崩——5000W 数据压测下的性能避坑全攻略
本文深入剖析 Elasticsearch 中模糊查询的三大陷阱及性能优化方案。通过5000 万级数据量下做了高压测试,用真实数据复刻事故现场,助力开发者规避“查询雪崩”,为您的业务保驾护航。
535 31
|
17天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
978 59
Meta SAM3开源:让图像分割,听懂你的话
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
具身智能核心突破:物理模拟器与世界模型协同技术拆解
本文系统综述了物理模拟器与世界模型在具身智能发展中的协同作用,提出五级智能机器人分类体系(IR-L0至IR-L4),分析其在运动、操作与交互中的进展,并对比主流仿真平台与世界模型架构,探讨其在自动驾驶与关节机器人中的应用及未来挑战。
169 113

热门文章

最新文章