一、系统架构设计
1. 环境建模
% 参数设置
start = [0,0,0]; % 起点坐标(x,y,z)
goal = [100,50,10]; % 终点坐标
obstacles = [30,20,5; 60,30,8; 80,40,12]; % 障碍物坐标(x,y,z)
m = 30; % 无人机质量(kg)
v_max = 28; % 最大速度(m/s)
omega_max = deg2rad(30); % 最大转弯角速度(rad/s)
climb_rate = 5; % 最大爬升率(m/s)
pitch_max = deg2rad(30); % 最大俯仰角(rad)
dt = 0.1; % 时间步长(s)
max_iter = 1000; % 最大迭代次数
2. 势场参数
k_att = 0.8; % 引力增益系数
k_rep = 120; % 斥力增益系数
d0 = 2; % 斥力作用阈值(m)
二、核心算法实现
1. 势场计算函数
function [F_att, F_rep] = compute_forces(pos, goal, obstacles)
% 引力计算
d_att = norm(pos - goal);
F_att = k_att * (goal - pos) / d_att;
% 斥力计算
F_rep = [0,0,0];
for i = 1:size(obstacles,1)
d_rep = norm(pos - obstacles(i,:));
if d_rep < d0
zeta = 3.5*sqrt(sum(obstacles(i,:) - mean(obstacles,1))^2); % 动态半径
F_rep = F_rep + k_rep*(1/d_rep - 1/d0)*exp(-d_rep/zeta)*(pos - obstacles(i,:))/d_rep^3;
end
end
end
2. 运动控制模块
function [new_pos, new_vel] = update_state(pos, vel, F_total)
% 加速度计算
a = F_total / m;
% 速度更新(考虑最大速度约束)
new_vel = vel + a*dt;
speed = norm(new_vel);
if speed > v_max
new_vel = (new_vel / speed) * v_max;
end
% 位置更新
new_pos = pos + new_vel*dt;
end
3. 约束处理算法
function [F_total, adjusted] = apply_constraints(pos, vel, F_total)
adjusted = false;
% 转弯率约束
current_yaw = atan2(vel(2), vel(1));
target_yaw = atan2(F_total(2), F_total(1));
delta_yaw = target_yaw - current_yaw;
delta_yaw = mod(delta_yaw, 2*pi);
if abs(delta_yaw) > omega_max*dt
F_total(1:2) = F_total(1:2) * (omega_max*dt / abs(delta_yaw));
adjusted = true;
end
% 爬升率约束
climb = F_total(3)/m;
if abs(climb) > climb_rate
F_total(3) = sign(climb)*m*climb_rate;
adjusted = true;
end
% 俯仰角约束
pitch = atan2(F_total(3), norm(F_total(1:2)));
if abs(pitch) > pitch_max
F_total(3) = norm(F_total(1:2)) * tan(pitch_max) * sign(pitch);
adjusted = true;
end
end
三、主程序流程
% 初始化
pos = start;
vel = [0,0,0];
path = pos';
% 主循环
for iter = 1:max_iter
% 计算合力
[F_att, F_rep] = compute_forces(pos, goal, obstacles);
F_total = F_att + F_rep;
% 约束处理
[F_total, adjusted] = apply_constraints(pos, vel, F_total);
% 更新状态
[pos, vel] = update_state(pos, vel, F_total);
path = [path; pos'];
% 终止条件
if norm(pos - goal) < 1.0
break;
end
% 动态障碍物更新(示例)
% obstacles = update_obstacles(obstacles, dt);
end
% 路径平滑处理
smooth_path = smooth_spline(path(:,1), path(:,2), path(:,3));
四、关键功能模块
1. 三维路径可视化
figure;
hold on;
plot3(path(:,1), path(:,2), path(:,3), 'b-o', 'LineWidth',2);
plot3(start(1),start(2),start(3),'go','MarkerSize',10,'LineWidth',2);
plot3(goal(1),goal(2),goal(3),'ro','MarkerSize',10,'LineWidth',2);
for i = 1:size(obstacles,1)
[X,Y,Z] = sphere(20);
X = X*obstacles(i,3)+obstacles(i,1);
Y = Y*obstacles(i,3)+obstacles(i,2);
Z = Z*obstacles(i,3)+obstacles(i,3);
surf(X,Y,Z,'FaceColor','r','FaceAlpha',0.3);
end
xlabel('X'); ylabel('Y'); zlabel('Z');
grid on; view(3);
2. 路径平滑算法
function smooth_path = smooth_spline(x,y,z)
t = linspace(0,1,numel(x));
ts = linspace(0,1,1000);
pp_x = spline(t,x);
pp_y = spline(t,y);
pp_z = spline(t,z);
smooth_x = ppval(pp_x,ts);
smooth_y = ppval(pp_y,ts);
smooth_z = ppval(pp_z,ts);
smooth_path = [smooth_x', smooth_y', smooth_z'];
end
五、性能优化策略
1. 动态势场调整
% 根据障碍物密度调整斥力系数
density = compute_obstacle_density(pos, obstacles);
k_rep = 100 + 50*density;
2. 多分辨率搜索
% 粗粒度路径生成
coarse_step = 5;
coarse_path = generate_coarse_path(start, goal, coarse_step, obstacles);
% 细粒度路径优化
fine_step = 0.5;
fine_path = refine_path(coarse_path, fine_step, obstacles);
3. GPU加速
% 使用gpuArray加速计算
pos_gpu = gpuArray(pos);
vel_gpu = gpuArray(vel);
F_total_gpu = compute_forces_gpu(pos_gpu, goal, obstacles);
参考代码 人工势场法在航迹规划的应用 www.youwenfan.com/contentale/64478.html
六、测试案例
1. 简单避障场景
- 环境参数:2个圆形障碍物(半径5m,中心坐标(30,20)和(60,30))
- 路径特性:生成平滑曲线,转弯半径>15m,爬升率<3m/s
2. 复杂地形穿越
- 环境参数:包含峡谷(高度差20m)和塔楼群(高度30-50m)
- 路径特性:三维螺旋上升,水平偏移<10m