【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)

简介: 【FFNN负荷预测】基于人工神经网络的空压机负荷预测(Matlab代码实现)

💥1 概述

摘要:


空气压缩机系统约占美国和欧盟工业用电量的10%。由于许多研究已经证明了使用人工神经网络进行空压机性能预测的有效性,因此仍然需要预测空压机的电气负荷曲线。本研究的目的是预测压缩空气系统的电气负载曲线,这对于行业从业者和软件提供商开发更好的负载管理和前瞻调度程序的实践和工具很有价值。采用两层前馈神经网络和长短期记忆两种人工神经网络对空压机的电气负荷进行预测。对具有三种不同控制机构的压缩机进行了评估,总共进行了 11,874 次观察。使用样本外数据集和 5 倍交叉验证对预测进行了验证。模型产生的平均决定系数值为0.24-0.94,平均均方根误差为0.05 kW - 5.83 kW,平均绝对比例误差为0.20 - 1.33。结果表明,两种人工神经网络对使用变速驱动的压缩机(平均R2 = 0.8且无中殿预测)均有较好的结果,只有长短期记忆模型对使用开/关控制的压缩机给出了可接受的结果(平均R2 = 0.82且无中殿预测),而对装卸式空压机(构成中殿预测的模型)没有获得满意的结果。


原文摘要:


Air compressor systems are responsible for approximately 10% of the electricity consumed in United States and European Union industry. As many researches have proven the effectiveness of using Artificial Neural Network in air compressor performance prediction, there is still a need to forecast the air compressor electrical load profile. The objective of this study is to predict compressed air systems' electrical load profile, which is valuable to industry practitioners as well as software providers in developing better practice and tools for load management and look-ahead scheduling programs. Two artificial neural networks, Two-Layer Feed-Forward Neural Network and Long Short-Term Memory were used to predict an air compressors electrical load. Compressors with three different control mechanisms are evaluated with a total number of 11,874 observations. The forecasts were validated using out-of-sample datasets with 5-fold cross-validation. Models produced average coefficient of determination values from 0.24 to 0.94, average root-mean-square errors from 0.05 kW - 5.83 kW, and mean absolute scaled errors from 0.20 to 1.33. The results indicate that both artificial neural networks yield good results for compressors using variable speed drive (average R2 = 0.8 and no naïve forecasting), only the long short-term memory model gives acceptable results for compressors using on/off control (average R2 = 0.82 and no naïve forecasting), and no satisfactory results are obtained for load/unload type air compressors (models constituting naïve forecasting).


📚2 运行结果

2.1 算例1

2.2 算例2

2.3 算例3

部分代码:

RMSE = sqrt(mean((y - yhat).^2));  % calculate root mean squared error
MASE = mean(abs(y-yhat))/(mean(abs(y(2:end)-y(1:end-1)))); % calculate mean absolute scaled error
mdl = fitlm(y,yhat);
R2 = mdl.Rsquared.Ordinary; % get R2 between observed and predicited
T =  table (RMSE,MASE, R2,'RowNames',{'Working Days'}); % construct output table
T.Properties.DimensionNames{1} = 'Mode';
figure
subplot(2,1,1)
plot(y)
hold on
plot(yhat,'.-')
hold off
legend(["Measured" "Predicted"])
xlabel("Timestep (15-minutes)") 
ylabel("Electrical Load (kW)")  
title(["Forecast using FFNN";"Compressor 3"])
subplot(2,1,2)
stem(yhat - y)
xlabel("Timestep (15-minutes)")
ylabel("Error (kW)")
title("RMSE = " + RMSE)


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码、数据、文章

目录
打赏
0
0
0
0
77
分享
相关文章
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
125 10
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
208 80
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。

热门文章

最新文章