基于YOLOv8的FPS射击类游戏人物识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

简介: 本项目基于YOLOv8与PyQt5开发,专为FPS射击类游戏人物识别设计,具备高精度、实时检测能力。包含完整训练代码、数据集及图形界面,支持图片、视频、摄像头多模式输入,提供从模型训练到部署的全流程解决方案,开箱即用,适合学术研究与AI工程实践。

基于YOLOv8的FPS射击类游戏人物识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!

🚀源码包含:完整YOLOv8训练代码 + 精选标注数据集 + 训练权重文件 + 可直接运行的人物识别程序 + 部署教程 & 训练教程

本项目仅作为学术研究,严禁用于其他用途。

项目摘要

随着YOLO系列目标检测算法的发展,其在实际游戏场景中的应用愈发广泛。尤其在FPS射击类游戏中,如何实时识别游戏画面中的敌我角色,成为游戏智能分析的重要研究方向之一。

本项目结合 Ultralytics YOLOv8 模型的高精度与高帧率检测能力,针对FPS游戏场景中人物目标进行优化训练,并配套开发 PyQt5 GUI图形界面系统,实现从模型加载、图像检测、视频流检测到结果保存的全流程自动化。

前言

本项目集成了强大的 YOLOv8检测模型 与便捷的 PyQt5图形界面,面向FPS类射击游戏中的人物识别应用场景,例如《CS:GO》《Call of Duty》《PUBG》等。支持对游戏画面中的人物进行精准识别和标注,且提供多种数据输入方式,包括图片、视频和摄像头流。

项目配套完整的YOLOv8训练流程说明,从数据标注、模型训练、权重转换、推理部署到GUI调用,确保零基础用户也能“开箱即用”,快速构建属于自己的AI识别工具。

一、软件核心功能介绍及效果演示

  • ✅ 支持 图片识别:一键导入游戏截图,自动识别出游戏人物位置并标注类别。
  • ✅ 支持 视频/实时流检测:可使用游戏录屏或OBS推流数据进行实时检测演示。
  • ✅ 支持 摄像头检测:外接摄像头监测屏幕场景,实时分析战场目标。
  • ✅ 支持 PyQt5图形界面:零代码操作,全图形界面完成检测流程。
  • ✅ 支持 训练模式重启:可根据你游戏场景中的数据重新训练YOLOv8模型以适配不同游戏。

👉 内附训练脚本、GUI运行脚本、一键推理脚本,支持快速部署!

image-20250710214722682

二、软件效果演示

为了直观展示本系统基于 YOLOv8 模型的检测能力,我们设计了多种操作场景,涵盖静态图片、批量图片、视频以及实时摄像头流的检测演示。

(1)单图片检测演示

用户点击“选择图片”,即可加载本地图像并执行检测:

image-20250710214817145


(2)多文件夹图片检测演示

用户可选择包含多张图像的文件夹,系统会批量检测并生成结果图。

image-20250710214840145


(3)视频检测演示

支持上传视频文件,系统会逐帧处理并生成目标检测结果,可选保存输出视频:

image-20250710215050804


(4)摄像头检测演示

实时检测是系统中的核心应用之一,系统可直接调用摄像头进行检测。由于原理和视频检测相同,就不重复演示了。

image-20250710215106656


(5)保存图片与视频检测结果

用户可通过按钮勾选是否保存检测结果,所有检测图像自动加框标注并保存至指定文件夹,支持后续数据分析与复审。

image-20250710215124267

三、模型的训练、评估与推理

YOLOv8是Ultralytics公司发布的新一代目标检测模型,采用更轻量的架构、更先进的损失函数(如CIoU、TaskAlignedAssigner)与Anchor-Free策略,在COCO等数据集上表现优异。
其核心优势如下:

  • 高速推理,适合实时检测任务
  • 支持Anchor-Free检测
  • 支持可扩展的Backbone和Neck结构
  • 原生支持ONNX导出与部署

3.1 YOLOv8的基本原理

YOLOv8 是 Ultralytics 发布的新一代实时目标检测模型,具备如下优势:

  • 速度快:推理速度提升明显;
  • 准确率高:支持 Anchor-Free 架构;
  • 支持分类/检测/分割/姿态多任务
  • 本项目使用 YOLOv8 的 Detection 分支,训练时每类表情均标注为独立目标。

YOLOv8 由Ultralytics 于 2023 年 1 月 10 日发布,在准确性和速度方面具有尖端性能。在以往YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。

image-20250526165954475

YOLOv8原理图如下:

image-20250526170118103

3.2 数据集准备与训练

采用 YOLO 格式的数据集结构如下:

dataset/
├── images/
│   ├── train/
│   └── val/
├── labels/
│   ├── train/
│   └── val/

每张图像有对应的 .txt 文件,内容格式为:

4 0.5096721233576642 0.352838390077821 0.3947600423357664 0.31825755058365757

分类包括(可自定义):

image-20250710215257257

3.3. 训练结果评估

训练完成后,将在 runs/detect/train 目录生成结果文件,包括:

  • results.png:损失曲线和 mAP 曲线;
  • weights/best.pt:最佳模型权重;
  • confusion_matrix.png:混淆矩阵分析图。

若 mAP@0.5 达到 90% 以上,即可用于部署。

在深度学习领域,我们通常通过观察损失函数下降的曲线来评估模型的训练状态。YOLOv8训练过程中,主要包含三种损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss)。训练完成后,相关的训练记录和结果文件会保存在runs/目录下,具体内容如下:

image-20250710215219985

3.4检测结果识别

使用 PyTorch 推理接口加载模型:

import cv2
from ultralytics import YOLO
import torch
from torch.serialization import safe_globals
from ultralytics.nn.tasks import DetectionModel

# 加入可信模型结构
safe_globals().add(DetectionModel)

# 加载模型并推理
model = YOLO('runs/detect/train/weights/best.pt')
results = model('test.jpg', save=True, conf=0.25)

# 获取保存后的图像路径
# 默认保存到 runs/detect/predict/ 目录
save_path = results[0].save_dir / results[0].path.name

# 使用 OpenCV 加载并显示图像
img = cv2.imread(str(save_path))
cv2.imshow('Detection Result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

预测结果包含类别、置信度、边框坐标等信息。

result_198_jpg.rf.bf1caf02fd235090a34fc8ad05109d25

四.YOLOV8+YOLOUI完整源码打包

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见【4.2 完整源码下载】:

4.1 项目开箱即用

作者已将整个工程打包。包含已训练完成的权重,读者可不用自行训练直接运行检测。

运行项目只需输入下面命令。

python main.py

读者也可自行配置训练集,或使用打包好的数据集直接训练。

自行训练项目只需输入下面命令。

yolo detect train data=datasets/expression/loopy.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 batch=16 lr0=0.001

4.2 完整源码

https://www.bilibili.com/video/BV1WNG5z8EzA

可至项目实录视频下方获取:

包含:

📦完整项目源码

📦 预训练模型权重

🗂️ 数据集地址(含标注脚本)

总结

本项目以 YOLOv8 为核心,结合 PyQt5 可视化界面,打造了一个开箱即用、功能齐全的 FPS射击类游戏人物识别系统,具备以下亮点:

  • 🚀 完整流程打包:包含数据集、标注文件、训练脚本、检测程序与可视化界面。
  • 🖼️ 多模式输入支持:支持图片、视频、摄像头等多种检测方式。
  • 🧠 训练与复训灵活:支持在你自己的游戏画面上重新训练,提高模型适配性。
  • 👨‍💻 GUI操作便捷:无需代码基础,通过PyQt5界面即可完成全部操作。
  • 💾 源码+教程全提供:适合项目参考、毕设复现、算法工程学习等多种用途。

📦 你将获得:一套可实际部署的人物检测系统 + 可复用的数据与训练流程 + 方便拓展的界面系统。

相关文章
|
人工智能 编解码 并行计算
Ai实现FPS游戏自动瞄准 yolov5fps自瞄
Ai实现FPS游戏自动瞄准 yolov5fps自瞄
10819 0
|
8月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的共享单车/自行车随意停放识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8模型与PyQt5界面,实现共享单车/自行车乱停放的智能检测。支持图片、视频、文件夹及摄像头输入,提供实时检测与结果保存功能。配套完整源码、训练数据集与权重文件,开箱即用,适合城市管理、交通执法等场景。项目包含详细训练教程与部署指南,助力AI学习者快速上手,推动智慧城市应用开发。
基于YOLOv8的共享单车/自行车随意停放识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
9月前
|
机器学习/深度学习 存储 人工智能
阿里云GPU服务器gn6v、gn7i、gn6i性能特点、区别及选择参考
阿里云GPU云服务器产品线凭借其强大的计算能力和广泛的应用价值,在这些领域中发挥着举足轻重的作用。阿里云GPU云服务器能够为各类复杂的计算任务提供高效、稳定的计算支持,助力企业和开发者在技术创新和业务拓展的道路上加速前行。本文将详细介绍阿里云GPU云服务器中的gn6v、gn7i、gn6i三个实例规格族的性能特点、区别及选择参考,帮助用户根据自身需求选择合适的GPU云服务器实例。
1030 60
|
7月前
|
机器学习/深度学习 监控 安全
基于YOLOv8的有无戴安全帽检测识别项目
本项目通过集成 YOLOv8 强大的目标检测能力与 PyQt5 的可视化界面,构建了一个 实用性强、易于部署、安全帽自动识别系统。无论是单张图片、视频监控,还是实时摄像头输入,该系统均可稳定工作,准确判断佩戴与未佩戴状态,极大减轻了传统人工巡查压力。
基于YOLOv8的有无戴安全帽检测识别项目
|
9月前
|
数据采集 自然语言处理 Java
Playwright 多语言一体化——Python/Java/.NET 全栈采集实战
本文以反面教材形式,剖析了在使用 Playwright 爬取懂车帝车友圈问答数据时常见的配置错误(如未设置代理、Cookie 和 User-Agent),并提供了 Python、Java 和 .NET 三种语言的修复代码示例。通过错误示例 → 问题剖析 → 修复过程 → 总结教训的完整流程,帮助读者掌握如何正确配置爬虫代理及其它必要参数,避免 IP 封禁和反爬检测,实现高效数据采集与分析。
580 3
Playwright 多语言一体化——Python/Java/.NET 全栈采集实战
|
9月前
|
机器学习/深度学习 人工智能 算法
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
9140 1
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
4765 2
|
数据可视化 JavaScript 前端开发
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。