RAG 是什么?一文带你看懂 AI 的“外挂知识库”

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: RAG(检索增强生成)是一种结合信息检索与文本生成的技术,通过“先查资料后回答”机制解决传统模型知识更新滞后及幻觉问题。其核心流程包括:1) 检索:从外部知识库中查找相关文本片段;2) 生成:将检索结果与用户查询输入给大语言模型生成回答。RAG利用Embedding模型将文本转为向量,通过语义匹配实现高效检索,提供更准确、实时的回答。

RAG 是什么

RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索文本生成的技术方案

RAG 技术就像给 AI 装上了「实时百科大脑」,通过先查资料后回答的机制,让 AI 摆脱传统模型的”知识遗忘”困境

主要核心流程分为:

  1. 检索(Retrieval):基于用户的输入,从外部知识库(数据库、文档、网页)中检索与查询相关的文本片段,通常使用向量化表示和向量数据库进行语义匹配。
  2. 生成(Generation): 将用户查询与检索到的内容作为上下文输入给 LLM(如 GPT、DeepSeek 等),由模型输出最终回答。

RAG 解决了什么问题

1、知识更新滞后

LLM 是离线训练的,一旦训练完成后,它们无法获取新的信息,因此,它们无法回答训练数据时间点之后发生的事件,比如“今天的最新新闻”

2、幻觉现象

大语言模型(LLM) 的回答是根据已有的 训练数据 和概率预测得出来的,当面对没有在训练中见过的问题时,模型可能会“编造”看似合理但实际上不准确或虚构的内容

RAG 是如何解决这些问题的?

RAG 将信息检索与语言生成相结合,在回答问题时,首先从外部知识库(如网页、数据库、文档等)中检索相关信息,再基于这些信息生成回答。这样一来:

  • 即使模型本身不包含最新知识,也能通过检索获取最新内容
  • 回答更加有依据,减少“编答案”的幻觉现象

RAG 流程

文档索引

在 RAG 中,文档索引 是整个流程的基础环节之一,将文档(word,excel,PDF,Markdown 等)根据一定的规则容划分为文本块(chunk),然后通过 Embedding 模型将文本块转换为向量并存入向量数据库中

文档索引的目的是为了实现高效、准确的信息检索,为后续的大语言模型生成提供可靠的上下文支持。

步骤

  1. 向量化用户问题:将 用户问题 用相同的 Embedding 模型转换为向量,用以检索相关知识分片
  2. 检索(Retrieval):通过向量数据库一系列高效的数学计算 (如余弦相似度、欧氏距离等),检索出语义相似度最高的几个知识分片(Top_k)
  3. 构建 Prompt :将 Prompt + 检索结果+ 用户问题 构建成完整的 Prompt
  4. 生成(Generation):大语言模型再根据这个 Prompt 生成结果

Embedding 模型是什么?

Embedding 是一种将文字序列(如词、句子或文档)转换为向量表示(固定维度的向量)的技术

模型目标:使得具有相似语义的文字序列对应的向量尽可能接近(即相似度高),而语义不同的文字序列对应的向量尽可能远离(即相似度低)

作用:通过数学计算向量之间的距离,快速检索出相似度最高的文字序列

目录
相关文章
|
21天前
|
人工智能 监控 搜索推荐
给RAG打分:小白也能懂的AI系统评测全攻略
RAG系统评估听起来高深,其实跟我们生活中的'尝鲜评测'没啥两样!本文用轻松幽默的方式,带你从检索质量、生成质量到用户体验,全方位掌握如何科学评测RAG系统,避免踩坑,让你的AI应用又快又准。#RAG技术 #AI评估 #信息检索 #大模型 #数据科学
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
当AI遇上元宇宙:内容生产的“外挂”时代
当AI遇上元宇宙:内容生产的“外挂”时代
97 8
|
11天前
|
人工智能 自然语言处理 数据库
超越传统搜索:RAG如何让AI更懂你
超越传统搜索:RAG如何让AI更懂你
236 109
|
11天前
|
人工智能 自然语言处理 数据库
超越关键词搜索:RAG如何让AI真正“理解”你的问题
超越关键词搜索:RAG如何让AI真正“理解”你的问题
189 102
|
18天前
|
存储 人工智能 自然语言处理
RAG:增强大模型知识库的新范式
RAG:增强大模型知识库的新范式
349 99
|
11天前
|
人工智能 自然语言处理 搜索推荐
超越幻觉:RAG如何为AI大模型注入“真实”的灵魂
超越幻觉:RAG如何为AI大模型注入“真实”的灵魂
153 81
|
1月前
|
存储 人工智能 运维
AI 网关代理 RAG 检索:Dify 轻松对接外部知识库的新实践
Higress AI 网关通过提供关键桥梁作用,支持 Dify 应用便捷对接业界成熟的 RAG 引擎。通过 AI 网关将 Dify 的高效编排能力与专业 RAG 引擎的检索效能结合,企业可在保留现有 Dify 应用资产的同时,有效规避其内置 RAG 的局限,显著提升知识驱动型 AI 应用的生产环境表现。
692 73
|
18天前
|
存储 人工智能 监控
如何用RAG增强的动态能力与大模型结合打造企业AI产品?
客户的问题往往涉及最新的政策变化、复杂的业务规则,数据量越来越多,而大模型对这些私有知识和上下文信息的理解总是差强人意。
54 2
|
20天前
|
敏捷开发 人工智能 自动驾驶
AI大模型入门第四篇:借助RAG实现精准用例自动生成!
测试开发是否总被用例维护、漏测风险和文档滞后困扰?RAG技术让AI实时解读最新需求,自动生成精准测试用例,动态对齐线上数据,节省70%维护成本,助你告别手工“填坑”,高效应对需求变化。
|
20天前
|
机器学习/深度学习 人工智能 监控
RAG系统优化大揭秘:让你的AI从学渣变学霸的进化之路
你的RAG系统回答问题总是差那么一点?从用户反馈收集到强化学习,这篇文章带你了解如何打造进化不息的RAG系统。通过一家书店智能助手的进化故事,展示数据驱动优化和模型微调策略如何让RAG系统越变越聪明,并帮助AI拥有真正的'学习能力'。

热门文章

最新文章