建立Hugging Face模型调用环境

简介: 本文介绍了如何在环境中导入transformers库,并从Hugging Face网站下载模型。如果使用镜像网站,需获取access token。部分模型需申请仓库权限,建议使用国外信息填写。有GPU的用户需先配置CUDA和pytorch-gpu。

1. 需要在环境中导入transformers库。

PHOTO-2024-11-06-13-23-48.jpg

2. 需要到Hugging Face网站下载模型。(TODO为下载保存的本地地址)

PHOTO-2024-11-06-13-23-56.jpg

3. 网站下载模型时采用镜像网站的话,需要到Hugging Face原网站上获取access token。跳转链接见hf- mirror首页最下方。

截屏2024-11-06 13.19.38.png

4. 个别模型需要申请仓库权限。节点地址、姓名、国家、联系方式都需要使用国外的才可以通过。建议设置如下。

PHOTO-2024-11-06-13-12-52.jpg

5. 有GPU可以使用的,需要先配置CUDA和pytorch-gpu

PHOTO-2024-11-06-18-34-10.jpg

相关文章
|
PyTorch API C#
【Python+C#】手把手搭建基于Hugging Face模型的离线翻译系统,并通过C#代码进行访问
目前翻译都是在线的,要在C#开发的程序上做一个可以实时翻译的功能,好像不是那么好做。而且大多数处于局域网内,所以访问在线的api也显得比较尴尬。于是,就有了以下这篇文章,自己搭建一套简单的离线翻译系统。以下内容采用python提供基础翻译服务+ C#访问服务的功能,欢迎围观。
1099 0
【Python+C#】手把手搭建基于Hugging Face模型的离线翻译系统,并通过C#代码进行访问
|
7天前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
46 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
27天前
|
数据采集 自然语言处理 PyTorch
动手实践:使用Hugging Face Transformers库构建文本分类模型
【10月更文挑战第29天】作为一名自然语言处理(NLP)爱好者,我一直对如何利用最先进的技术解决实际问题充满兴趣。Hugging Face 的 Transformers 库无疑是目前最流行的 NLP 工具之一,它提供了大量的预训练模型和便捷的接口,使得构建和训练文本分类模型变得更加简单高效。本文将通过具体的实例教程,指导读者如何使用 Hugging Face 的 Transformers 库快速构建和训练一个文本分类模型,包括环境搭建、数据预处理、模型选择与训练等步骤。
60 0
|
机器学习/深度学习 数据挖掘 PyTorch
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(上)
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库(上)
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch中的模型创建(一)
最全最详细的PyTorch神经网络创建
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
|
5月前
|
自然语言处理 PyTorch API
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
`transformers`库是Hugging Face提供的一个开源库,它包含了大量的预训练模型和方便的API,用于自然语言处理(NLP)任务。在文本生成任务中,`transformers`库提供了许多预训练的生成模型,如GPT系列、T5、BART等。这些模型可以通过`pipeline()`函数方便地加载和使用,而`generate()`函数则是用于生成文本的核心函数。
|
人工智能 数据可视化 TensorFlow
从Tensorflow模型文件中解析并显示网络结构图(CKPT模型篇)
从Tensorflow模型文件中解析并显示网络结构图(CKPT模型篇)
从Tensorflow模型文件中解析并显示网络结构图(CKPT模型篇)
|
机器学习/深度学习 算法 开发工具
ModelScope中,请问下四元关系的数据 能FineTune吗 关系会不会太复杂了
ModelScope中,请问下四元关系的数据 能FineTune吗 关系会不会太复杂了
47 1
|
机器学习/深度学习 数据可视化 Java
TensorFlow 高级技巧:自定义模型保存、加载和分布式训练
本篇文章将涵盖 TensorFlow 的高级应用,包括如何自定义模型的保存和加载过程,以及如何进行分布式训练。