数据在内存中的存储方式

简介: 本文介绍了计算机中整数和浮点数的存储方式,包括整数的原码、反码、补码,以及浮点数的IEEE754标准存储格式。同时,探讨了大小端字节序的概念及其判断方法,通过实例代码展示了这些概念的实际应用。

前言

       我们都知道,在计算机中,数据都是以二进制的形式存储的。但是对于整数和浮点数而言,它们的存储方式却略有不同。今天我们深入探讨以下整数和浮点数在内存中的存储。


一、整数的存储

      整数的二进制表示方法有三种:原码,反码和补码。当表示有符号的整数时,这三种表示方法都有符号位数值位两部分,符号位占一个二进制位(最高位),数值位占其余二进制位,当符号位为0时,表示这是一个正数,为1时表示这是一个负数


这里需要注意以下两点:


1.正整数的源码,反码和补码相同。

2.对于负整数,三者均不相同:

       原码:直接将数值翻译成二进制数。

       反码:符号位不变,数值位按位取反。

       补码:反码+1得到补码。


整数的存储方式:一律以补码的形式存储。


二、大小端字节序及其判断

       首先,我们来运行一段代码:



我们给a赋值0x11223344,但是在内存窗口中这四个字节的内容却是倒着排放的。这是为什么呢?


这就涉及到大小端的问题了。


1.什么是大小端

       对于一个超过一字节的数据,在内存中存储的时候我们就需要考虑到字节排列的顺序问题。我们根据不同的字节存储顺序,将其分为大端字节序和小端字节序。它们的含义是:


大端字节序表示低位的字节内容存放在高地址处,高位字节内容存放在低地址处。

小端字节序表示低位的字节内容存放在低地址处,高位字节内容存放在高地址处。

我们画图表示一下大小端的含义:



2.为什么有大小端

       那么,为什么会有大小端呢?


       因为在很多编程语言当中,许多数据类型的内存大小是大于一个字节(8bit)的,它们存储在宽度大于一个字节的寄存器当中时,必然存在多个字节安排顺序的问题。因此,大端字节序和小端字节序就出现了。


3.用c语言编写程序判断大小端

       在了解了大小端的概念及成因后,我们就可以由此来写一个程序,判断当前机器是大端还是小端了:

#include <stdio.h>
 
int main()
{
    int a = 0x11223344;
    char* p = &a;//用char型指针访问int型变量,访问其最低地址的空间
    printf("%x\n", *p);
    return 0;
}

运行结果:



可以看到,程序以十六进制形式打印出了这个数的最低位。由于char型指针访问的是int类型的最低地址空间,这就说明最低地址存放的是低位的字节内容,所以作者的电脑是小端字节序


三、浮点数的存储

       了解了整数的存储之后,我们来探讨一下浮点数的存储。首先我们可以猜一猜以下代码的运行结果:

#include <stdio.h>
 
int main()
{
    int n = 9;
    float* p = (float*)&n;
    printf("n的值为:%d\n", n);
    printf("*p的值为:%f\n", *p);
    *p = 9.0f;
    printf("n的值为:%d\n", n);
    printf("*p的值为:%f\n", *p);
    return 0;
}

结果如下:



看到结果,想必你会大吃一惊吧!为什么同一个数,以不同的类型输出会有这么大的差异?这就关乎浮点数在内存中的存储了。


1.浮点数的存储规则

根据国际IEEE754标准,任意一个二进制的浮点数都可以表示成如下形式:

其中, 表示符号位,S为0时,表示V是一个正数;S为1时,表示V是一个负数。

          表示V的有效数字。

          表示指数位。


举个例子,对于浮点数5.0,它的二进制形式是101.0,写成科学计数法就是。


这样,根据刚才的格式,S=0,M=1.01,E=2。


我们可以发现:对于一个浮点数,只要知道了S,M,E这三个值,就能得出这个浮点数的值。在计算机中,浮点数也是将这三个数存储到内存中,使用时根据规则就能够得到该值。这三个数的存储规则如下:


对于32位的浮点数,最高位存储S,接下来的8位存储E,剩下的23位存储M。

对于64位的浮点数,最高位存储S,接下来的11位存储E,剩下的52位存储M。



2.浮点数的存储过程:

1.对于有效数字M,由于 ,就是1.xxxxxx的形式,那么这个个位数“1”就可以不用存储,只存储小数部分,这样就可以多存储一位有效数字。

2.对于指数E,首先这里的E一定是一个无符号整数,但是科学计数法的指数是可以出现负数的,所以,IEEE754规定:存入E时,要给它加上一个中间数再存储。对于8位的E,中间数是127;对于11位的E,这个中间数是1023。


3.浮点数的读取过程:

浮点数的读取过程分三种情况:

1.E的各位不全为0或者不全为1:此时,将E的值取出并减去127(或1023),得到真实值,然后将有效数字M加上1。

2.E全为0:此时,E的真实值变成1-127(或1-1023),并且M不再加1,这用于表示±0或者极小的数字。

3.E全为1:此时,如果有效数字M全为0,这个数就表示正负无穷大(符号由S决定)。

了解了浮点数的存储规则,存储过程和读取过程之后,之前代码的运行结果就能够说明白了。


总结

       这篇文章我们探讨了整数的存储、大小端的概念和判断方式、浮点型数据的存储规则,存储过程和读取过程,进一步了解了计算机底层数据的存储模式。之后博主会继续跟大家分享c语言相关内容,感谢大家的支持❤❤❤

相关文章
|
8天前
|
存储 编译器 数据处理
C 语言结构体与位域:高效数据组织与内存优化
C语言中的结构体与位域是实现高效数据组织和内存优化的重要工具。结构体允许将不同类型的数据组合成一个整体,而位域则进一步允许对结构体成员的位进行精细控制,以节省内存空间。两者结合使用,可在嵌入式系统等资源受限环境中发挥巨大作用。
30 11
|
2月前
|
监控 算法 应用服务中间件
“四两拨千斤” —— 1.2MB 数据如何吃掉 10GB 内存
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
|
2月前
|
存储
共用体在内存中如何存储数据
共用体(Union)在内存中为所有成员分配同一段内存空间,大小等于最大成员所需的空间。这意味着所有成员共享同一块内存,但同一时间只能存储其中一个成员的数据,无法同时保存多个成员的值。
|
2月前
|
监控 Java easyexcel
面试官:POI大量数据读取内存溢出?如何解决?
【10月更文挑战第14天】 在处理大量数据时,使用Apache POI库读取Excel文件可能会导致内存溢出的问题。这是因为POI在读取Excel文件时,会将整个文档加载到内存中,如果文件过大,就会消耗大量内存。以下是一些解决这一问题的策略:
104 1
|
2月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
2月前
|
缓存 安全 Java
使用 Java 内存模型解决多线程中的数据竞争问题
【10月更文挑战第11天】在 Java 多线程编程中,数据竞争是一个常见问题。通过使用 `synchronized` 关键字、`volatile` 关键字、原子类、显式锁、避免共享可变数据、合理设计数据结构、遵循线程安全原则和使用线程池等方法,可以有效解决数据竞争问题,确保程序的正确性和稳定性。
42 2
|
2月前
|
存储 编译器
数据在内存中的存储
数据在内存中的存储
42 4
|
2月前
|
存储 Java
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
这篇文章详细地介绍了Java对象的创建过程、内存布局、对象头的MarkWord、对象的定位方式以及对象的分配策略,并深入探讨了happens-before原则以确保多线程环境下的正确同步。
57 0
JVM知识体系学习四:排序规范(happens-before原则)、对象创建过程、对象的内存中存储布局、对象的大小、对象头内容、对象如何定位、对象如何分配
|
2月前
|
存储 C语言
深入C语言内存:数据在内存中的存储
深入C语言内存:数据在内存中的存储
|
5月前
|
存储 分布式计算 Hadoop
HadoopCPU、内存、存储限制
【7月更文挑战第13天】
299 14
下一篇
无影云桌面