没有数据库也能用 SQL

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: SPL(Structured Process Language)是一款开源软件,允许用户直接对CSV、XLS等文件进行SQL查询,无需将数据导入数据库。它提供了标准的JDBC驱动,支持复杂的SQL操作,如JOIN、子查询和WITH语句,还能处理非标准格式的文件和JSON数据。SPL不仅简化了数据查询,还提供了强大的计算能力和友好的IDE,适用于多种数据源的混合计算。

手头有些 csv/xls 文件,比如这样的:
155d1f80794749b78ff808e6e4c6655a_4161550c69774182bfce3d969cbe0ae7_430d9b9a7e07665a5fca83de8237df88_531322.png

这种数据很适合用 SQL 做查询,但可惜 SQL 只能用在数据库,要安装个数据库并把这些文件导入,为这么个目标搞的整个应用系统都臃肿很多,实在是划不来。要是有什么技术能直接把这些文件当成数据表用 SQL 查询就好了。

没问题 SPL 来帮你,SPL 是个开源软件,
spl 提供了标准的 JDBC 驱动,被 Java 程序引入后,就可以文件使用 SQL 查询了。

Class.forName("com.esproc.jdbc.InternalDriver");
Connection conn =DriverManager.getConnection("jdbc:esproc:local://");
PrepareStatement st = conn.prepareStatement("$select * from employee.txt where SALARY >=? and SALARY<?");
st.setObject(1, 3000);
st.setObject(2, 5000);
ResultSet result=st.execute();

在命令行中也可以用 SQL 来查询文件:

esprocx.exe -R select Client,sum(Amount) from d:/Orders.csv group by Client

SPL 提供了相当于 SQL92 标准的 SQL 语法:

select * from orders.xls where Amount>100 and Area='West' order by OrderDate desc
select Area, sum(Amount) from orders.xls having sum(Amount)>1000
select distinct Company from orders.xls where OrderDate>date('2012-7-1')

还有 join:

select o.OrderId,o.Client,e.Name e.Dept from d:/Orders.csv o ,d:/Employees.csv e where o.SellerId=e.Eid
select o.OrderId,o.Client,e.Name e.Dept,e.EId from Orders.txt o left join Employees.txt e on o.SellerId=e.Eid

子查询和 with 都支持:

select t.Client, t.s, ct.Name, ct.address from 
   (select Client ,sum(amount) s from Orders.csv group by Client) 
left join ClientTable ct on t.Client=ct.Client
select * from d:/Orders.txt o where o.sellerid in (select eid from Employees.txt)
with t as (select Client ,sum(amount) s from Orders.csv group by Client)
select t.Client, t.s, ct.Name, ct.address from t left join ClientTable ct on t.Client=ct.Client

其实,SPL 并不是一个专门提供 SQL 语法的产品,它本身有 SPL 语法,SQL 只是在 SPL 的基础上顺便提供的,所以 SPL 可以做到不依赖于数据库执行 SQL。
在 SPL 的支持下,可以进一步拓展这些 SQL 的应用范围,比如支持格式不太规范的文件:
用 | 分隔的文本

select * from {file("Orders.txt").import@t(;"|")} where Amount>=100 and Client like 'bro' or OrderDate is null

没有标题行的文本,用序号表示字段

select * from {file("Orders.txt").import()} where _4>=100 and _2 like 'bro' or _5 is null

读取 Excel 的某个 sheet

select * from {file("Orders.xlsx").xlsimport@t(;"sheet3")} where Amount>=100 and Client like 'bro' or OrderDate is null

还可以查询 json 文件

select * from {json(file("data.json").read())} where Amount>=100 and Client like 'bro' or OrderDate is null

以及从 web 下载来的 json

select * from {json(httpfile("http://127.0.0.1:6868/api/getData").read())} where Amount>=100 and Client like 'bro' or OrderDate is null

SPL 还能访问来自 mongodb,kafka,…的数据,当然普通关系数据库更不在话下。这就可以形成多样数据源上的混合计算能力。

SPL 的能力也远不止于此,esProc 初衷也是提供比 SQL 更强大且方便的运算能力,而 SQL 语法一定程度地限制了查询的描述,只能适应于相对简单的场景。
比如这个任务,计算一支股票最长连续上涨的天数,SQL 要写成多层嵌套,冗长且难懂:

select max(ContinuousDays) from (
    select count(*) ContinuousDays from (
        select sum(UpDownTag) over (order by TradeDate) NoRisingDays from (
            select TradeDate,case when Price>lag(price) over ( order by TradeDate) then 0 else 1 end UpDownTag from Stock ))
    group by NoRisingDays )

同样的计算逻辑,用 SPL 写起来要简单得多:

Stock.sort(TradeDate).group@i(Price<Price[-1]).max(~.len())

spl 还有所见即所得的 IDE,调试代码也远比 SQL 方便:

9287b1825ea0f2cbca139473efd04bde_b519d2681a7240c3a817285ab81f61e6_clipboard.png

前往乾学院可以对 SPL 有更多的理解,它可以取代几乎所有的数据库计算能力,还要更强大得多。

相关文章
|
4月前
|
SQL 存储 关系型数据库
第二篇:关系型数据库的核心概念与 SQL 基础
本篇内容深入浅出地讲解了关系型数据库的核心概念与SQL基础,适合有一定计算机基础的学习者。文章涵盖数据库的基本操作(CRUD)、数据类型、表的创建与管理等内容,并通过实例解析SELECT、INSERT、UPDATE、DELETE等语句的用法。此外,还推荐了多种学习资源与实践建议,帮助读者巩固知识。学完后,你将掌握基础数据库操作,为后续高级学习铺平道路。
185 1
|
5月前
|
SQL 数据库 数据安全/隐私保护
数据库数据恢复——sql server数据库被加密的数据恢复案例
SQL server数据库数据故障: SQL server数据库被加密,无法使用。 数据库MDF、LDF、log日志文件名字被篡改。 数据库备份被加密,文件名字被篡改。
|
3月前
|
SQL 关系型数据库 MySQL
Go语言数据库编程:使用 `database/sql` 与 MySQL/PostgreSQL
Go语言通过`database/sql`标准库提供统一数据库操作接口,支持MySQL、PostgreSQL等多种数据库。本文介绍了驱动安装、连接数据库、基本增删改查操作、预处理语句、事务处理及错误管理等内容,涵盖实际开发中常用的技巧与注意事项,适合快速掌握Go语言数据库编程基础。
202 62
|
2月前
|
SQL XML Java
配置Spring框架以连接SQL Server数据库
最后,需要集成Spring配置到应用中,这通常在 `main`方法或者Spring Boot的应用配置类中通过加载XML配置或使用注解来实现。
181 0
|
3月前
|
SQL 人工智能 关系型数据库
GitHub 热门!MindsDB 破解 AI + 数据库瓶颈,究竟有什么惊艳亮点?只需 SQL 即可实现智能预测
MindsDB 是一款将 AI 能力直接注入数据库的开源工具,支持 MySQL、PostgreSQL 等多种数据库连接,通过 SQL 即可完成模型训练与预测。它提供 AutoML 引擎、LLM 集成、联邦查询等功能,简化 MLOps 流程,实现数据到智能的无缝衔接。项目在 GitHub 上已获 32.4k 星,社区活跃,适用于客户流失预警、推荐系统、情感分析等场景。开发者无需深入模型细节,即可快速构建智能解决方案。项目地址:https://github.com/mindsdb/mindsdb。
229 0
|
5月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
5月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
6月前
|
SQL 数据库连接 Linux
数据库编程:在PHP环境下使用SQL Server的方法。
看看你吧,就像一个调皮的小丑鱼在一片广阔的数据库海洋中游弋,一路上吞下大小数据如同海中的珍珠。不管有多少难关,只要记住这个流程,剩下的就只是探索未知的乐趣,沉浸在这个充满挑战的数据库海洋中。
129 16
|
6月前
|
SQL 关系型数据库 MySQL
如何优化SQL查询以提高数据库性能?
这篇文章以生动的比喻介绍了优化SQL查询的重要性及方法。它首先将未优化的SQL查询比作在自助餐厅贪多嚼不烂的行为,强调了只获取必要数据的必要性。接着,文章详细讲解了四种优化策略:**精简选择**(避免使用`SELECT *`)、**专业筛选**(利用`WHERE`缩小范围)、**高效联接**(索引和限制数据量)以及**使用索引**(加速搜索)。此外,还探讨了如何避免N+1查询问题、使用分页限制结果、理解执行计划以及定期维护数据库健康。通过这些技巧,可以显著提升数据库性能,让查询更高效流畅。
|
5月前
|
SQL IDE 关系型数据库
JetBrains DataGrip 2025.1 发布 - 数据库和 SQL 跨平台 IDE
JetBrains DataGrip 2025.1 (macOS, Linux, Windows) - 数据库和 SQL 跨平台 IDE
288 0